Manual para el Desarrollo de Viviendas Sismorresistentes

CONSIDERANDO LA INFLUENCIA DEL EMPLAZAMIENTO: CARACTERÍSTICAS DE SUELO, GEOLOGÍA Y TOPOGRAFÍA

Una contribución para la reconstrucción de manera sistemática de las ciudades afectadas por el terremoto de la Región Ica del 15 de agosto de 2007

Publicación financiada por el Ministerio Británico para el Desarrollo Internacional (DFID, U.K.)
Manual para el Desarrollo de Viviendas Sismorresistentes

CONSIDERANDO LA INFLUENCIA DEL EMLAZAMIENTO:
CARACTERÍSTICAS DE SUELO, GEOLOGÍA Y TOPOGRAFÍA

Una contribución para la reconstrucción de manera sistemática de las ciudades afectadas por el terremoto de la Región Ica del 15 de agosto de 2007

Publicación financiada por el Ministerio Británico para el Desarrollo Internacional (DFID, U.K.)
CONTENIDO

Vivendas de cabas y madera
CAPÍTULO II
106

Vivendas de abaharana arnoude
CAPÍTULO VII
96

Vivendas de abaharana conhaque
CAPÍTULO V
64

Vivendas simonettas de abore
CAPÍTULO III
46

Símonettas, el sitio en el que se desarrollan vivendas
Importancia de las características
CAPÍTULO II
18

Símonettas en el Parque
Buenas prácticas de vivendas
CAPÍTULO I
8

RECONOCIMIENTOS
6

PRESENTACIÓN
4
El territorio del Perú se encuentra asentado sobre dos placas tectónicas activas: la Sudamericana y la Nazca, conformantes del Anillo de Fuego del Pacífico, donde tiene lugar el 80% de la actividad sísmica y volcánica de la Tierra. Por ello, nuestro país es susceptible a la ocurrencia de terremotos, deslizamientos, tsunamis y erupciones volcánicas que, sumados al precario proceso de ocupación y desarrollo de sus ciudades, al inadecuado manejo de los recursos naturales y económicos, así como al rápido crecimiento demográfico, lo exponen, permanentemente, a amenazas y riesgos cuya falta de prevención ha ocasionado la pérdida de vidas humanas y considerables costos al Estado.

Las experiencias de los desastres más recientes, como el terremoto de la Región Ica, ocurrido el 15 de agosto de 2007, han demostrado que nuestro país aún no está aplicando plenamente los instrumentos necesarios para actuar en forma preventiva en lo correspondiente a la planificación y el ordenamiento territorial urbano, a la emisión de las disposiciones para la ocupación y construcción segura, así como en lo referente a los preparativos para la atención y respuesta adecuada cuando estos eventos adversos sucedan.

En este sentido, el proceso de reconstrucción se está enmarcando dentro de la definición de un conjunto de políticas y acciones articuladas con el Programa Nacional de Ciudades Sostenibles (PCS), los planes de desarrollo, el acondicionamiento territorial, la prevención y la aplicación de los instrumentos técnicos, legales y normativos sobre el uso y gestión del suelo; todo lo cual está permitiendo una eficiente gestión del riesgo, la adecuada coordinación entre los diferentes entes del Estado, la expedición de normas coherentes integradas a la gestión del territorio y la difusión de la información objetiva y pertinente respecto de los peligros que se ciernen sobre nuestras ciudades.
Debe quedar claro que, en adelante, no se trata de reconstruir el pasado, sino de construir el futuro y ello implica sustentarnos en bases científicas, metodologías validadas y en el desarrollo de acciones concretas. En este sentido, el proceso de reconstrucción deberá conducir a que el Gobierno Nacional y los Gobiernos Regionales y Locales, así como las diversas instituciones e incluso los propios ciudadanos, revisen los esquemas y categorías con los que se han estado afrontando las situaciones de riesgo.

Asimismo, este proceso compromete a la comunidad científica y a las autoridades para que provean a los técnicos responsables y a la población en general de los instrumentos necesarios para hacer frente a las urgencias que nos obligan a actuar ya en políticas de prevención y mitigación de desastres naturales.

Lo anteriormente expresado constituye el propósito fundamental de las publicaciones, manuales y documentos de política promovidos y auspiciados por el Ministerio de Vivienda, Construcción y Saneamiento, dentro del marco del proceso de reconstrucción.

En este contexto, el Programa de las Naciones Unidas para el Desarrollo - PNUD - con el apoyo económico del Ministerio Británico para el Desarrollo Internacional (DFID, UK) y la participación especializada de consultores peruanos - ha elaborado el presente volumen: Manual para el Desarrollo de Viviendas Sismorresistentes.

Este Manual recoge las mejores prácticas desarrolladas en el país sobre viviendas de adobe, albañilería confinada, albañilería armada y quincha. También se resalta la importancia de las características físicas de la ubicación de las viviendas para reducir pérdidas humanas y materiales en futuros eventos naturales intensos que las puedan afectar, como los sismos e inundaciones.

Destacan los aportes institucionales de la Pontificia Universidad Católica del Perú (PUCP), la Facultad de Ingeniería Civil de la Universidad Nacional de Ingeniería (FIC/UNI) y el Servicio Nacional de Capacitación para la Industria de la Construcción (SENCICO), del Sector Vivienda.

Finalmente, es importante señalar que corresponde, principalmente, a los Gobiernos Regionales y Locales asumir, con el mayor sentido preventivo, sus respectivas responsabilidades frente a los efectos que podrían provocar los desastres naturales en el futuro.

Enrique Cornejo Ramírez
Ministro de Vivienda,
Construcción y Saneamiento
currido el terremoto de la Región Ica, el 15 de agosto de 2007, las primeras evaluaciones indicaron que la tarea de rehabilitación y reconstrucción de la zona afectada por el sismo sería complicada, costosa y tomaría no menos de unos tres años.

El 20 de septiembre de 2007, el Ministerio de Vivienda, Construcción y Saneamiento (MVCS), solicitó, mediante oficio dirigido al suscrito, asesoría técnica especializada para ser brindada al Estado Peruano en lo correspondiente a planes y proyectos para la rehabilitación y reconstrucción de las zonas afectadas por el sismo. La asesoría se proporcionaría específicamente al Ministerio de Vivienda Construcción y Saneamiento (MVCS) y también se canalizaría, por intermedio del Sector Vivienda, al Fondo para la Reconstrucción Integral de las Zonas Affectadas por el sismo del 15 de agosto de 2007 (FORSUR), según lo establecido en el artículo 10º de la Ley 29078.

En respuesta a tal requerimiento, el PNUD nombró al ingeniero Julio Kuroiwa, asesor técnico principal (ATP) del Programa de Ciudades Sostenibles (INDECI/PNUD), para brindar la asesoría solicitada y liderar un conjunto de productos de apoyo a la reconstrucción, entre los cuales se encontraba la formulación de este manual.

El Manual para el Desarrollo de Viviendas Sismorresistentes se inicia con un breve marco referencial de algunas experiencias registradas a lo largo del Continente Americano, y profundiza en las buenas prácticas desarrolladas en el Perú sobre el tema. Esta publicación es uno de los productos que nuestro Programa entrega al MVCS, FORSUR, autoridades regionales y locales y comunidades afectadas,
como una contribución a la reconstrucción, de manera sistemática, de las ciudades devastadas por el terremoto de la Región Ica.

El territorio del Perú reúne una naturaleza privilegiada, una geografía de extremos variados y una de las concentraciones de biodiversidad más altas del mundo. Sin embargo, estas características, al mismo tiempo que determinan un potencial de diversidad y biodiversidad importante, representan una gran proclividad a desastres naturales y una alta vulnerabilidad para la población, la infraestructura, las inversiones sociales y la producción.

Este manual se ha elaborado mediante una valiosa contribución del Ministerio Británico para el Desarrollo Internacional (DFID, UK.), que ha permitido reunir a un grupo de expertos científicos peruanos que coinciden en las medidas accesibles y guías que deben tenerse en cuenta al momento de iniciar la construcción o autoconstrucción de viviendas. Esta contribución del DFID ha permitido también realizar las validaciones técnicas de las propuestas presentadas.

Deseamos a la vez reconocer y agradecer al Ministerio de Vivienda, Construcción y Saneamiento bajo la conducción del Ministro Enrique Cornejo Ramírez, por la confianza y apoyo en el desarrollo de este trabajo de orientación, que consideramos será de crucial importancia para la reducción del riesgo y el acceso a mejores prácticas en la construcción de viviendas para la población.

Jorge Chediek
Coordinador Residencial del Sistema de las NNUU y
Representante Residente del PNUD en el Perú
Buenas prácticas de viviendas sismorresistentes en el Perú
Frente a los devastadores daños causados en la costa sur peruana por el sismo de agosto de 2007, el presente manual tiene como finalidad principal difundir las buenas prácticas desarrolladas en nuestro país en el tema de las viviendas sismorresistentes.

RETO Y RESPUESTA

El Perú está firmemente empeñado en desarrollar, con el mayor impulso, el concepto de viviendas sismorresistentes, tanto en los aspectos referidos al desarrollo de construcciones de adobe mejorado, viviendas de albardería concha, como en los aspectos de construcción de viviendas sismorresistentes, tanto en lo que respecta a su uso como a su coste. La colectividad tiene plena conciencia de la gran influencia que ejercen en las viviendas sismorresistentes el grado de cañas y las posibilidades económicas, incluyendo los subsidios y préstamos que podrían obtener.

El manual espera ser también de utilidad para aquellas familias que reconstruyan sus viviendas, para que las consigan con sus medios materiales. En este caso, se realizó una entrevista a aquellos grupos de personas de buena voluntad, pertenecientes a ONG, universidades, organizaciones religiosas y, por supuesto, a los profesionales especializados y docentes, para que, después de leerlo, puedan contribuir a brindar a los habitantes afectados las orientaciones técnicas adecuadas dentro del proceso de reconstrucción.

UNA GRAN TAREA

Los objetivos principales son evitar que en las nuevas construcciones se repitan los defectos estructurales que provocaron las fallas de las viviendas y orientar a los pobladores para que ubiquen sus hogares en sectores de peligro natural bajo o medio.

Sólo de esta manera, se evitarán mayores sufrimientos y las pérdidas humanas y materiales que pueden volver a ocasionar, en cualquier momento, futuros eventos intensos, como el devastador sismo que afectó esta zona.

El equipo que ha desarrollado este manual se ha esforzado, con especial dedicación, para presentar los contenidos en forma sencilla y práctica, a fin de que tengan una fácil comprensión y aplicación, y queda a la espera de recibir opiniones y aportes que contribuyan al enriquecimiento de futuras publicaciones.

En la Tabla 1 se observa la inmensa tarea...
que se tendrá que enfrentar en los próximos meses y años para reconstruir la zona afectada por el sismo del 15 de agosto de 2007. Por otro lado, no debemos perder de vista que, en un proceso tan dinámico y cambiante como el que se desarrolla en una etapa de reconstrucción, dichas cifras continuarán variando en el lapso de pocos meses.

<table>
<thead>
<tr>
<th>DEPARTAMENTO PROVINCIA</th>
<th>TOTAL VIVIENDAS</th>
<th>GRADO DE AFECTACIÓN DE LAS VIVIENDAS</th>
<th>VIVIENDAS DESTRUIDAS</th>
<th>VIVIENDAS MUY AFFECTADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL ÁREA AFECTADA</td>
<td>75,786</td>
<td>52,154</td>
<td>23,632</td>
<td></td>
</tr>
<tr>
<td>DEPARTAMENTO DE ICA</td>
<td>64,868</td>
<td>46,455</td>
<td>18,413</td>
<td></td>
</tr>
<tr>
<td>ICA</td>
<td>27,024</td>
<td>20,013</td>
<td>7,011</td>
<td></td>
</tr>
<tr>
<td>CHINCHA</td>
<td>24,599</td>
<td>17,708</td>
<td>6,891</td>
<td></td>
</tr>
<tr>
<td>PISCO</td>
<td>13,245</td>
<td>8,734</td>
<td>4,511</td>
<td></td>
</tr>
<tr>
<td>DEPARTAMENTO DE LIMA</td>
<td>9,011</td>
<td>4,906</td>
<td>4,105</td>
<td></td>
</tr>
<tr>
<td>CAÑETE</td>
<td>7,977</td>
<td>4,547</td>
<td>3,430</td>
<td></td>
</tr>
<tr>
<td>YAUYOS</td>
<td>1,034</td>
<td>359</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>DEPARTAMENTO DE HUANCAVELICA</td>
<td>1,907</td>
<td>793</td>
<td>1,114</td>
<td></td>
</tr>
<tr>
<td>CASTROVIRREYNA</td>
<td>890</td>
<td>370</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>HUAYTARÁ</td>
<td>987</td>
<td>417</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>HUANCAVELICA*</td>
<td>30</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

* Distrito de Acobamba
La mayoría de las viviendas que colapsaron y se encuentran actualmente inhabitables o que fueron afectadas seriamente son construcciones de adobe. De la Tabla 1 se puede deducir que los mayores esfuerzos de reconstrucción de viviendas deben concentrarse en las provincias de Ica, Chincha, Pisco, Cañete, Yauyos, Huaytará, Castroviireyra y Huancavelica en ese orden, de acuerdo con el número registrado de viviendas destruidas, inhabitables y afectadas.

La mayoría de las viviendas que colapsaron y se encuentran actualmente inhabitables o que fueron afectadas seriamente son construcciones de adobe. En estos casos, es evidente la gran influencia que tuvieron las características físicas locales en el grado de daños y en la correspondiente distribución geográfica.

Por ejemplo, los daños fueron severos en Pisco y Tambo de Mora, donde el suelo poco compacto, de arena fina y húmeda sufrió liquefacción. Se constató que los poblados y viviendas rurales localizados en terrenos de cultivo regado por gravedad y que son constantemente humedecidos habían incrementado, por esta razón, su intensidad sísmica.

Esto fue lo que ocurrió en la hacienda Huallcará, en Cañete, donde la destrucción llegó al 100%, y en el poblado de Lamas, en Yauyos, el cual, pese a estar en un lugar distante del epicentro, sufrió severos daños porque se encuentra asentado sobre un deslizamiento permanentemente activo.

Las construcciones de albañilería y de concreto reforzado que fallaron tenían defectos estructurales y no habían sido diseñadas de acuerdo con el Reglamento Nacional de Edificaciones, del que forma parte la Norma Sísmorresistente (NSR). Sin embargo, no todo fue negativo. La NSR NTE 030/97, aprobada por el Gobierno en el año 1997, había logrado la eliminación casi total del defecto estructural de columna corta de los locales escolares. Por esta razón, ningún centro educativo diseñado con esta norma falló durante el terremoto de Arequipa, en 2001, ni en el reciente terremoto de la región Ica.

El riesgo de una vivienda y de la familia que la habita depende del peligro natural –en el caso de un sismo, de la intensidad esperada–, del sitio donde se ubica la vivienda y de su vulnerabilidad, es decir, de la capacidad que tiene la construcción para resistir los efectos de un evento sísmico. La vulnerabilidad varía numéricamente entre 0 y 1. Cero (0) si no sufre ningún daño y uno (1), si el evento ocurre y la destrucción es total.

Existe consenso en la comunidad tecnocientífica internacional en afirmar que las condiciones físicas locales, determinadas por las características de suelos, geología y topografía, juegan un rol crucial en el grado de daños que puede sufrir una vivienda, así como en la distribución geográfica de estos daños en las construcciones de la zona. Por este motivo, en el Capítulo II, se desarrolla el importante tema referido a las características de sitio para el desarrollo de viviendas sísmorresistentes.

EFECTO DE MICROZONA

En este sentido, cobra singular importancia en nuestro país tener en cuenta los efectos de microzona. Por ejemplo, es de conocimiento de los residentes de la capital que, cuando ocurren sismos que se generan en la zona de sub-
ducción de la costa central del Perú, los daños en el distrito de La Molina son más severos que en la zona centro de la ciudad de Lima.

Un caso concreto grafica esta apreciación. Durante el terremoto del 3 de octubre de 1974, diversas edificaciones de concreto armado, cuyas construcciones habían sido financiadas y supervisadas por una entidad de crédito multilateral y que estaban ubicadas en el campus de la Universidad Nacional Agraria La Molina (UNALM), colapsaron o sufrieron daños severos. Algunos de estos edificios quedaron fuera de servicio pese a que, tras haber sufrido daños durante el sismo del año 1966, habían sido reparados y reforzados.

Por el contrario, en el centro del valle del Rímac, lugar donde se ubican, entre otros sectores y distritos, el centro histórico de Lima y la parte antigua de Magdalena, San Isidro y Miraflores, y donde existen centenarios de antiguas construcciones de adobe, estas casi no sufrieron daños.

Esta desigual distribución del grado de daños también quedó en evidencia tras producirse los sismos que han afectado la ciudad de Lima a lo largo del siglo XX, en 1908, 1940 (M 8.2) y 1966.

Esta experiencia de diferencia notoria en el grado de daños entre La Molina y los distritos ubicados en el centro del valle del Rímac, inspiró y orientó los estudios de campo sobre 16 terremotos que ocurrieron en las Américas, entre 1962 y 2007. Estas investigaciones se concentraron en la influencia

Las condiciones físicas locales, determinadas por las características de suelos, geología y topografía, juegan un rol crucial en el grado de daños que puede sufrir una vivienda.

F-1.1 Hundimiento de viviendas en Tambo de Mora, por licuación de suelo. Agosto 2007.
que tienen las características locales de sitio en el grado de los daños en las edificaciones de adobe, albañilería y concreto reforzado.

Entre los casos estudiados, fueron de suma importancia las experiencias y enseñanzas que dejaron los terremotos de México, en 1985, y Loma Prieta, California, en 1989. Se podría asumir que era baja la vulnerabilidad de las aproximadamente tres mil edificaciones de concreto y albañilería que fallaron o sufrieron daños severos en Ciudad de México, y de las construcciones de madera colapsadas o deterioradas en diverso grado en el distrito de Marina, San Francisco, CA.

Sin embargo, en esa época, hace más de dos décadas, pese a que ya se tenía un notorio avance en la ingeniería sismorresistente en México y California, aún no era posible determinar que las amplificaciones de las ondas sísmicas en el caso de Ciudad de México, urbe asentada sobre suelos fangosos, alcanzarían un incremento del orden de 1000% en comparación con el comportamiento que tienen las ondas en suelos firmes.

La razón principal de los daños que produjeron estos eventos sísmicos es que fueron causados, principalmente, por un lado, por el suelo fangoso sobre el cual esta asentada...
da Ciudad de México y, por otra parte, por los relieves mal compactados en los que se asienta el distrito de Marina, que fueron conformados con los escombros de edificios que colapsaron y se incendiaron durante el gran terremoto que devastó San Francisco en 1906. Como se puede fácilmente deducir, el riesgo era muy alto, pues las características físicas locales eran muy desfavorables.

Por estas razones, en el Perú hemos adoptado un nuevo enfoque para reducir el riesgo: construir viviendas en sectores en los que el mapa de peligros o los estudios de suelos indican que la amenaza natural es baja o media.

Allí, los costos de construcción son menores, al igual que el costo del mantenimiento de las viviendas durante su vida útil. Si, eventualmente, la construcción fuera dañada al enfrentar un evento adverso, este costo podría incluir también el de la reparación y su reforzamiento, por ser menores los daños, al haberse reducido la posibilidad de un colapso severo.

La relevancia de desarrollar el plan de desarrollo urbano de ciudades importantes como Lca, Pisco, Chirica y Canete, tomando como sustento técnico sus mapas de peligros, se incluye en el Capítulo II. El material que contiene dicho capítulo también será muy útil para tomar medidas preventivas en pequeños poblados y viviendas rurales aisladas.

CONSTRUCCIONES SEGURAS PARA LOS PERUANOS CON MENORES RECURSOS

El nuevo enfoque de construir en lugares seguros debe acompañarse de buenas prácticas de construcciones sismorresistentes, las cuales, durante las dos últimas décadas, se han venido desarrollando y aplicando en el Perú en forma gradual, pero exitosa.

Por ello, en el Capítulo III se dan a conocer útiles metodologías para el reforzamiento de las viviendas nuevas de adobe y la restauración de aquellas antiguas que, habiendo sufrido algún deterioro, pueden ser aún recuperables y requerir ser reforzadas.

Además, se explicita cómo y por qué fallan las viviendas de adobe al ser impactadas por los eventos sísmicos. Asimismo, se proporcionan orientaciones básicas para fabricar un buen adobe, sin ahondar en mayores detalles, pues existen buenos manuales, como el de SENCICO, que indican bastante bien el proceso pormenorizado para lograr unicidades de adobe de calidad.

En el mismo capítulo, se explican los cuidados que se debe tener en cuenta para el vaciado de la cimentación, el levantamiento de las paredes de adobe y la construcción de los techos, los cuales, en este caso deben ser de materiales ligeros.
Los métodos de refuerzo incluidos en este capítulo son:

- Refuerzo de muros de adobe con malla exterior natural, con utilización de caras y sogas.
- Refuerzo con malla electrosoldada, por ambas caras de los muros.
- Refuerzo de muros de adobe con malla de polímero.
- Refuerzo interior de los muros con cañas o materiales similares e inclusión de la viga collar.

El colaborador principal en este capítulo ha sido el ingeniero Daniel Torrealva, profesor y reconocido investigador de la Pontificia Universidad Católica del Perú, PUCP.

Un método constructivo muy utilizado en las áreas urbanas del Perú es el de las vivenidas de albañilería confinada. Este tema se incluye en el Capítulo IV. Dichos muros se caracterizan por estar íntegramente bordeados de elementos de concreto armado: columnas y vigas.

Este capítulo contiene también recomendaciones para la buena práctica constructiva de la cimentación, los sobrecimientos, los criterios para seleccionar buenas unidades de albañilería, el tratamiento de los ladrillos antes de ser asentados, el mezclado del mortero y el proceso de construcción con albañilería, incluyéndose la altura máxima que debe levantarse por jornada para evitar el aplastamiento de las filas fiescas inferiores.

Asimismo, se analizan los defectos constructivos que deben evitarse en la unión “muro de albañilería/columna”, el cuidado en la instalación de tuberías de agua y desagüe para que estas no debiliten los muros, la eliminación de cangrejeras, el llenado del concreto, incluyendo la correcta colocación de los refuerzos con varillas de acero, así como orientaciones para evitar los defectos en el llenado techo-viga de borde, a fin de conseguir una buena adherencia y trabajo en conjunto ante las amenazas de cargas de gravedad y sísmicas.

Este capítulo, que se sugiere sea estudiado con detenimiento por las valiosas enseñanzas que transmite, se ilustra, además, con abundantes fotografías y gráficos. Fue desarrollado, principalmente, por el destacado profesor Ángel San Bartolomé de la Pontificia Universidad Católica del Perú, PUCP.

El Capítulo V está dedicado a la presentación de la albañilería armada, definida así porque los bloques de concreto que la conforman tienen aberturas interiores o alvéolos relativamente grandes, que permiten colocar varillas de acero verticales y horizontales y resultan fáciles de llenar con mortero arena-cemento, conformando un conjunto sólido y resistente.

El doctor Carlos Zavala, director a.i. del CISMID FIC/UNI, acopió su vasta experiencia en este capítulo, en el cual también se presenta y define el bloque de concreto y los tipos que existen en el mercado nacional.
Se proporcionan, asimismo, recomendaciones para la utilización de muros de bloques de concreto con confinamiento esquemático, así como para emplear muros de bloques con armadura distribuida vertical y horizontalmente.

Se describe, a continuación, el proceso de fabricación de los muros, incluyendo la limpieza de los bloques antes de ser asentados y su retoque, la preparación del mortero, el esqueleto de los bloques, la colocación del refuerzo metálico vertical y horizontal y el vertido de mortero.

En California, EE.UU., y en Japón, la construcción de albañilería armada está muy difundida pues se utilizan bloques de concreto de muy buena calidad. Por eso, el diseño y la construcción de viviendas de albañilería armada se efectúan de acuerdo con las normas que se utilizan en dichos países y se obtienen construcciones muy resistentes a las altas intensidades sísmicas.

En la región afectada por el sismo del 15 de agosto de 2007, se pueden observar construcciones con bloques de concreto; sin embargo, en casi todos los casos, estos son fabricados artesanalmente, sin ningún control de calidad y con muy escaso cuidado. Sí se mejora la calidad de los bloques de concreto y se estudia una mejor manera de colocar las varillas de acero verticales y horizontales correctamente verticales de cemento en álveos seleccionados, podría ser esta una buena solución para las nuevas viviendas que se construirán en la región afectada.

Finalmente, el Capítulo VI se refiere a las construcciones con caña y madera y a la combinación de ambas. Por su poco peso y flexibilidad, las buenas construcciones que se realizan con estos materiales son altamente resistentes a los sísmos. El tratamiento de barrido y paja aísla la vivienda y la protege del ruido exterior y de los cambios climáticos. Además, se logra un atractivo acabado final si se utiliza un mortero con cemento, yeso y arena. Su costo es bajo en aquellos lugares donde abunda la caña brava y la madera.

Mediante el desarrollo de la quincha modular prefabricada se le agregan a estas ventajas, las siguientes mejoras adicionales: la fabricación de módulos en planta con control de calidad, la producción masiva y un método constructivo fácil, que facilita, después de ocurrido un desastre, la autoconstrucción o reconstrucción con la participación de la comunidad afectada.

![Imagen de quincha modular](image_url)

F.1.5 En las regiones de Tumbes y Piura, las construcciones de caña y bambú son comunes. Por su poco peso, los efectos sísmicos sobre dichas viviendas son menores.
CAPÍTULO II
Importancia de las características de sitio en el desarrollo de viviendas sismorresistentes
Quienes residen en Lima Metropolitana saben que, durante los terremotos que han afectado la costa central del Perú, los daños en el distrito de La Molina han sido siempre mucho más severos que en la parte central del valle del Rímac.

INTRODUCCIÓN

En efecto, en los sismos ocurridos en 1908, 1940, 1966, 1970 y 1974, mientras que en La Molina las edificaciones de albanilería y de concreto armado, colapsaron o sufrieron severos daños, en las zonas urbanas de Lima antigua, San Isidro y Miraflores, situadas lejos de los bordes del valle del Rímac, miles de centenarias viviendas de adobe sólo sufrieron deterioros leves e incluso actualmente todavía continúan habitadas.

Durante el siglo XX, en el centro del valle del Rímac la intensidad sísmica no sobrepasó los grados VI y VII MMI; sin embargo, en el sector de La Molina donde se ubica la Universidad Nacional Agraria La Molina (UNALM) la intensidad llegó a IX MMI.

¿Por qué se produce esta desigualdad tan notoria en el grado de daños y en la intensidad sísmica medida en la escala Mercalli Modificada – MMI?

Esta sorprendente situación se puede explicar por las diferencias que existen entre La Molina y la parte central del valle del Rímac en cuanto a las características del suelo y su distinta geología y topografía.

En términos generales, los suelos en La Molina son residuales, es decir, se han ido formando por la desintegración de las rocas de los cerros cercanos; no han sido transportados por agua, las piedras que lo conforman tienden a ser angulosas y la ausencia de corrientes de agua no ha permitido incrementar la compactación del suelo.

Asimismo, La Molina se encuentra rodeada por cerros conformados por rocas rígidas, donde las ondas sísmicas superficiales quedan atrapadas y rebotan, superponiéndose a las nuevas ondas sísmicas incidentes.

En cambio, el suelo de la parte central del valle ha sido depositado a una velocidad considerable por la corriente de agua del río Rímac. Es por ello que las partículas depositadas consisten en arena gruesa con poco contenido de partículas finas y engloban piedras redondeadas de diferente tamaño.

Esto se puede observar claramente en los acantilados de la Costa Verde, entre Magdalena y Miraflores (F-2.1).

Es notorio el efecto de microzona que se produce entre La Molina, por un lado, y los sectores cercanos al valle del Rímac, por otra parte.
En Barranco existe, en cambio, intercalación de estratos, tanto de conglomerado, como de suelo fino, lo que indica que fueron depositados por el río Rimac a diferentes velocidades de arrastre.

En cambio, el suelo de Chorrillos corresponde a los remanentes de la margen izquierda del río Rimac, que dejaron en esta zona sus partículas finas. El suelo arcilloso que allí predomina puede observarse, por ejemplo, en los acantilados de Agua Dulce.

Tras el terremoto de 1940, los daños en Chorrillos fueron severos por causa de los suelos finos que allí existen y porque la napa freática estaba cercana a la superficie (F-2.2). Por otra parte, debido a la sobreexplotación del agua subterránea, su nivel se ha ido deprimiendo velocemente en unas decenas de metros, de manera tal que, en la actualidad, el suelo de Chorrillos es seco. Esta situación ha provocado que, en ese distrito, la intensidad sísmica en la zona cercana a los cerros sea ahora menor de lo que solía ser hace algunas décadas.

Es notorio el efecto de microzona que se produce entre La Molina, por un lado, y los sectores cercanos al valle del Rimac, por otra parte. Debido a las distintas características de
sitio, las intensidades son diferentes unos 2 ó 3 grados en la escala MMI, a pesar de la poca distancia que separa a dichas zonas.

Esta experiencia registrada en los sectores de La Molina y el valle del Rímac fue determinante porque ha inspirado múltiples estudios efectuados con la finalidad de evaluar los efectos de 16 terremotos ocurridos en las Américas, California y el sur de Chile, desde 1963 hasta el año 2007, se focalizaron en el análisis de la correlación entre las características físicas del sitio y los daños causados en las edificaciones de adobe, abanillería y concreto reforzado.

La conclusión a la que se ha llegado después de todo este periplo investigativo es que las condiciones locales tienen una gran influencia en el grado de daños, así como en su distribución geográfica.

Estas conclusiones concuerdan con los resultados obtenidos por investigadores californianos y japoneses después de estudios de campo y de análisis, mediante estudios de laboratorio e investigaciones teóricas, los efectos de sitio de los terremotos de México, 1985; Loma Prieta, CA, 1989; Northridge, CA, 1994 y Kobe, Japón, en 1995.

Podemos decir que existe consenso en la comunidad tecnocientífica internacional en señalar que las condiciones físicas de emplazamiento, en casos de sismo y otros fenómenos naturales intensos, son críticas en el nivel de daños que causan y en su distribución geográfica.

Los efectos de microzona confirman la importancia de utilizar mapas de peligros para regular la densificación de la población y planificar la expansión de ciudades, así como para ubicar las obras importantes de infraestructura en sectores con peligro natural bajo o medio. De esta manera, se logra no sólo la reducción de los costos iniciales de construcción, sino también de los gastos de mantenimiento, durante la vida útil de las construcciones, y de su reparación si se dañara.

Efectos de microzona en el terremoto de México, 1985

Entre los diversos casos estudiados resaltan los sismos ocurridos en Ciudad de México, en 1985, y en Loma Prieta, California, en 1989.

Analicemos el primer caso. Durante el terremoto de Michoacán de 1985, con epicentro en el océano Pacífico, frente a las costas de este estado, en Ciudad de México (Cdmx), ubicada a unos 300 km de distancia del foco, los daños fueron severos en un sector poco extenso, que no llegaba al 5% del área metropolitana de esta gran ciudad.

Los daños se concentraron en el fondo del antiguo lago Texcoco, que es suelo pantanoso, blando, saturado de agua y con un espesor de varias decenas de metros. Allí colapsaron o sufrieron severos daños aproximadamente 3 mil edificios de concreto armado y abanillería. La línea de elementos de color guinda, en forma de pimiento, de la figura F-2.3a encierra el área más afectada por este terremoto. Entre los edificios que sufrieran consecuencias severas se encontraban los hospitales más importantes de ese país, bajo cuyos escombros se perdieron 5,800 camas de hospitalización.

Desde esa fecha, la Organización Panamericana de la Salud (OPS) ha dedicado tiempo y esfuerzo, en América Latina y el Caribe, para reducir daños en los hospitales. Siempre ha actuado de manera preventiva y proactiva para reducir el riesgo de desastres.
Los efectos de microzona confirman la importancia de utilizar mapas de peligros para regular la densificación de la población y planificar la expansión de ciudades, así como para ubicar las obras importantes de infraestructura en sectores con peligro natural bajo o medio.
OPS ha tratado de evitar, anticipadamente y en la medida de lo posible, que ocurran pérdidas humanas y heridos, en lugar de sólo prestar asistencia médica, después de que los fenómenos naturales intensos hayan causado víctimas en las poblaciones vulnerables.

En la figura F-2.3a, el sector de CdM donde se muestra la zona del lago (C) señala con color naranja, tiene suelo fangoso y de grano fino, saturado de agua. La zona de transición (B), de color amarillo, es una franja de terreno que se desarrolla entre las zona C y A. Esta última zona es un extenso territorio con suelo firme y seco.

La distribución de daños —en porcentajes— del terremoto de México de 1937, dejó precisos datos estadísticos que indican inobjetablemente la influencia de las características físicas del sitio. El sector con los mayores daños está delimitado por la línea punteada de color verde, así como los porcentajes. En el sector C, zona del lago, ocurrió el 95.6% de todos los daños que afectaron CdM, a pesar de que ocupa menos del 5% del área total de la ciudad. En la zona de transición los daños fueron el 4% y en el resto —una gran extensión— sólo se produjo el 0.4% de los daños totales que acumuló el área metropolitana de CdM.

En la figura F-2.3b se muestra un corte en el terreno, que atraviesa los sectores A, B y C.
La distribución de daños –en porcentajes– del terremoto de México de 1957, dejó precisos datos estadísticos que indican inobjetablemente la influencia de las características físicas del sitio.

El sector C, fondo del antiguo lago Texcoco, es un relleno superficial de 5 a 10 m de espesor (de color rojo); debajo de esa capa se ubica un estrato de suelo predominantemente arcilloso y saturado de agua. En el sector A, de suelo firme y seco, predomina la grava, mientras que en el sector B, de transición, existe intercalación de estratos de grava, arena y limo.

Los pocos daños cerca del epicentro y, en cambio, la gravedad de los daños y su distribución geográfica en Cdm, bastante lejana del foco, pueden ser explicados mediante los registros de acelerogramas obtenidos en las costas de Michoacán, a 50 km del epicentro, y en Cdm, a 300 km del foco, tanto en terreno firme, como en el suelo fangoso de la zona del lago. Estos registros se pueden observar en la figura F-2.4.
Fig. 2.4 Se muestran los registros de once acelerogramas: uno cerca al epicentro, nueve en CdM y uno en Puebla, ciudad localizada a unos 120 km al SE de CdM. En el eje horizontal se representa el tiempo en segundos y en el eje vertical, las aceleraciones en cm/seg². Nótese que en la estación más cercana al epicentro, estación CDR, el tiempo registrado en el eje horizontal fue de 25 segundos y la aceleración máxima unos 15 cm/seg², mientras que en CdM, en la estación SCT, el tiempo registrado del sismo duró 150 segundos y la aceleración máxima llegó a 150 cm/seg², lo que indica que, a pesar de la mayor distancia, las ondas sísmicas se amplificaron unas 10 veces. Obsérvese también que en los 5 acelerogramas registrados en CdM, sobre terreno firme, las aceleraciones fueron mucho menores que en los 4 gráficos obtenidos sobre suelo fangoso, en el fondo del antiguo lago Texcoco. El último registro se obtuvo en Puebla. Nótese que la duración del registro y el nivel de aceleración son similares a los registrados sobre suelo firme en CdM.

EFFECTO DE MICROZONA EN EL TERREMOTO DE LOMA PRIETA

El distrito de Marina se encuentra ubicado en el extremo norte de la península de San Francisco, EEUU, unos 100 km al norte del epicentro del terremoto que afectó Loma Prieta, California, en 1989 (F-2.5a). La zona urbana de Marina se desarrolla sobre rellenos conformados con los escombros de la demolición de los edificios colapsados e incendiados durante el gran sismo de 1906. También está asentada sobre arena suelta, no consolidada, de dunas playeras (F-2.5b).
En las áreas con edificaciones asentadas sobre suelos no compactos los daños fueron mucho más severos que en sectores cercanos al epicentro.

En las áreas con edificaciones asentadas sobre suelos no compactos los daños fueron mucho más severos que en sectores cercanos al epicentro. En Marina, una zona evaluada con peligro alto, colapsaron numerosos edificios de madera (F-2.5c), los cuales, a pesar de su poco peso, eran sumamente vulnerables por tener el primer piso blando y por el tipo de suelo, que produjo altas aceleraciones.

Debido a las altas aceleraciones y deformaciones del suelo, fallaron también las tuberías matrices del sistema de distribución de agua para uso doméstico, así como también las tuberías del primer sistema redundante para el control de incendios. La ciudad de San Francisco se salvó de un nuevo gran incendio como el que la había destruido en 1906, debido a que...
se puso rápidamente en funcionamiento el segundo sistema redundante de agua para combatir incendios, consistente en embarcaciones-bomba ancladas en el mar, las que impulsaron agua salada desde la bahía de San Francisco hasta las zonas sinestriadas, lo que permitió controlar los incendios que comenzaban a expandirse en diversos puntos de la ciudad.

son frecuentes y permiten distinguir el grado de intensidad de manera relativamente sencilla. Esto ha permitido estudiar y comprender cómo las ondas sísmicas se amplifican en sectores con suelos blandos y saturados de agua, aun sin el efecto confinamiento de acelerogramas, como sucedió en la ciudad de Huaraz, ubicada a unos 200 km del epicentro del sismo que se produjo el 31 de mayo de 1970, donde la destrucción llegó al 100% en las construcciones de adobe. F-2.6a, 2.6b, 2.6c, 2.6d.

Esta misma situación ocurrió en la parte baja de Chiquimula, Guatemala, cerca de la orilla de un río, donde el suelo es húmedo, lo que ocasionó el grave colapso de las construcciones de adobe. Todavía es posible observar los restos de una iglesia que fue destruida por el sismo de 1986.

EFECTOS DE MICROZONA Y ENSEÑANZAS RESULTANTES DE LOS SISMOS OCURRIDOS EN EL PERÚ

De las inspecciones técnicas efectuadas después de diversos sismos que afectaron Centro y Sudamérica —la mayoría de ellos ocurridos en el Perú—, se puede concluir que las condiciones locales de sitio tienen una gran influencia en el grado de daños y en su distribución geográfica.

Las construcciones de adobe, que son abundantes en América Latina, son particularmente sensibles a grados intermedios de intensidades, es decir, entre V y VII MMI, que...
F-2.6b Vista aérea de Huaraz tomada en 1972. Los escombros de las viviendas colapsadas habían sido removidos y numerosas manzanas lucían completamente limpias. El cuadrito arbolado del centro de la foto señala la ubicación de la Plaza de Armas. A la izquierda el río Guicay.

F-2.6c Flujo del agua subterránea. Centro de Huaraz, 1971. [Fuente: estudios de la Subcomisión Técnica de CRYRZA]

Las ondas sísmicas se amplifican en sectores con suelos blandos y saturados de agua.

En San Pedro, Chimbote, que se asienta sobre arena eólica depositada por el viento sobre roca rígida, durante el terremoto de 1970, colapsó el 100% de las viviendas de adobe. Cuando la relación de densidad y rigidez del suelo de un estrato suprayacente es mucho menor que la base rocosa sobre la que se depositó, la teoría de geofísica señala que la amplificación de las ondas en el estrato suelto es muy grande (relación de impedancia). Esto fue lo que realmente sucedió en el poblado de San Pedro. (F-2.7).

En la costa peruana -arenosa, árida y ventosa- existen numerosos lugares con esta característica de sitio; por ejemplo, en las regiones de Ica y Trujillo. Lamentablemente, en sitios como los descritos se construyen edificaciones con ladrillo crudo, es decir, adobes de dimensiones reducidas. Estas viviendas son verdaderas trampas para sus residentes. Esta peligrosa forma de construir debería ser erradicada completamente.

Los daños son también severos en pendientes inestables, como ocurrió en el sector de San Francisco, Moquegua, donde la destrucción de viviendas de adobe alcanzó el 100% (F-2.8), durante el terremoto de Arequipa del 23 de junio de 2001.
Durante el terremoto de Arequipa de 2001, diversas construcciones de bloques de concreto y de concreto armado ubicadas en el cono norte de Tacna, sufrieron severos daños, sobre todo en aquellos sectores donde los suelos están formados por rellenos recientes (F-2.9).

Algo similar ocurrió en Armenia, Colombia, durante el sismo de 1999. En zonas construidas sobre rellenos recientes, como el barrio de Brasilia, la destrucción de edificaciones fue casi total (F-2.10).

NUEVO ENFOQUE PARA LA REDUCCIÓN DEL RIESGO EN VIVIENDAS

De acuerdo con la experiencia ganada tanto en el Perú como en las Américas en nuestro país, una nación relativamente pobre y en vías de desarrollo, hemos optado por aplicar un nuevo enfoque para reducir el riesgo de los desastres (F-2.11).

Como se sabe, el riesgo depende de la vulnerabilidad y del peligro natural. En el caso de la zona del antiguo lago Texcoco en CDM, durante el terremoto de 1985, y en el distrito
Construcciones de bloques de concreto y de concreto armado ubicadas en el cono norte de Tacna, sufrieron severos daños, sobre todo en aquellos sectores donde los suelos están formados por rellenos recientes.

de Marina, cuando ocurrió el sismo de Loma Prieta, en 1989, en San Francisco, California, las edificaciones fallaron, pese a que fueron diseñadas y construidas, según los avances y experiencias de la época, por ingenieros mexicanos y californianos, con buenos conocimientos de ingeniería sismorresistente y, a pesar de que las edificaciones dañadas tenían, asimismo, baja vulnerabilidad. Sin embargo, el peligro era muy alto y alto, y el riesgo era aún mayor. Prueba de ello es que, tras esos dos terremotos, miles de edificaciones de albañilería y concreto armado, en CDMX, y numerosas construcciones de madera, en Loma Prieta, colapsaron o sufrieron severos daños.

F-2.11 Diagrama del nuevo enfoque, que pone especial énfasis en la reducción del riesgo de desastres en el Perú, mediante la densificación de la población y la expansión de los centros urbanos hacia sectores en los que los estudios de las ciencias de la Tierra y la ingeniería han establecido que el peligro natural es bajo o medio. De esta manera, se puede dar seguridad a las viviendas con costos mucho menores que los que serían necesarios para reducir la vulnerabilidad de las edificaciones peligrosamente asentadas en suelos pantanosos, como ocurre en algunos sectores de Tambo de Mora y Pisco Playa.
En el Perú, para reducir el riesgo debemos aplicar este nuevo enfoque, consistente en que, además de mejorar la calidad sísmorresistente de las viviendas, las construcciones deben ser ubicadas en sectores de peligro bajo o medio.

Con el objetivo de aplicar sistemáticamente este nuevo enfoque, adoptado desde fines de 1998, en nuestro país se viene desarrollando el Programa de Ciudades Sostenibles – Primera Etapa (PCS-1E), en cuya aplicación se enfatiza el primer atributo de una Ciudad Sostenible: su seguridad física.

Hasta fines de mayo de 2008, se han culminado los mapas de peligros de aproximadamente 130 ciudades, con una población total de 6,5 millones de habitantes. Las ciudades investigadas están distribuidas a lo largo y ancho del país.

APLICACIÓN DEL NUEVO ENFOQUE EN LA RECONSTRUCCIÓN DE LAS CIUDADES AFECTADAS POR EL SISMO DEL 15 DE AGOSTO DE 2007

Cuando ocurrió el terremoto de la región Ica, del 15 de agosto de 2007, 16 ciudades ubicadas en la región macrosismica habían sido previamente estudiadas en los años 2001-2002 y contaban con sus respectivos mapas de peligros, plan de uso de suelos y perfiles de proyectos para la mitigación de desastres. Estos útiles elementos de microzonificación y desarrollo urbano son los tres componentes principales del PCS-1E, que viene siendo implementado en todo el país por INDECI y el PNUD.

De conformidad con la metodología que aplica el PCS-1E, las ciudades y sus zonas de expansión son investigadas –utilizando herramientas de las ciencias de la tierra y la ingeniería– y divididas en sectores con diferentes grados de peligros: muy alto, alto, medio y bajo.

En el caso de sectores de peligro muy alto, la fuerza de la naturaleza es tan alta que cualquier obra construida por el hombre puede ser destruida completamente. Es lo que ocurre, por ejemplo, en los cursos de huaycos y aludes, como en el caso de la ciudad de Ranrahira, que fue borrada parcialmente del mapa en 1962 y de manera total en 1970.

Actualmente, Ranrahira, que fue el hogar de cerca de 5 mil personas, es un desolado paisaje, sin rastros de vida humana. La Naturaleza recobró violentamente el espacio que necesita para cumplir el ciclo del agua. La localidad de Ranrahira estaba ubicada en el drenaje natural del nevado Huascarán.

La peligrosidad es también muy alta en los sectores donde ocurre licuación generalizada del suelo. En ellos, el costo para dar seguridad a las construcciones es tan elevado que no se justifica su uso para fines urbanos, como es el caso de varios sectores del distrito de Tambo de Mora, en la provincia de Chircha.

Por ejemplo, no sería racional, en localidades como Pisco playa o Tambo de Mora, apoyar las edificaciones pequeñas sobre pilotes, para que no se hundan. Esta solución sería factible, económicamente, para obras impor-
En el Perú, para reducir el riesgo debemos aplicar este nuevo enfoque, consistente en que, además de mejorar la calidad sismorresistente de las viviendas, las construcciones deben ser ubicadas en sectores de peligro bajo o medio.

El puente Huamaní no sufrió mayores daños excepto en los extremos de sus apoyos, sin que esto produjera consecuencias estructurales. El puente está apoyado sobre grandes caissons (enormes cilindros de concreto reforzado), cuya cimentación se encuentra por debajo del nivel del suelo que se licucó. En cambio, no se afectó la estabilidad de la masa de suelo estable que está debajo, sobre la cual están apoyados los caissons.

Un sector con peligro alto es utilizable para fines urbanos, pero sujeto a restricciones. Por ejemplo, no está permitido construir viviendas de adobe en aquellos lugares donde se esperan aceleraciones sísmicas muy altas o en las zonas inundables, en las que el agua permanecerá por varios días; por dichas circunstancias las viviendas de adobe suelen sufrir el 100% de daños.

Durante El Niño 1997-98, según el Instituto Nacional de Estadística e Informática (INEI), cerca de 33 mil casas de adobe se destruyeron, cuando las partes inferiores de sus muros permanecieron bajo el agua por varios días. Por esta misma causa, un sector de Chalucanas, en Piura, fue totalmente destruido.

Según la Norma Sismorresistente vigente, las instalaciones esenciales y necesarias en casos de desastre, como los hospitales, centros educativos, delegaciones policiales y cuarteles de bomberos, deben ubicarse en sectores de peligro bajo.

Un sector con peligro alto es utilizable para usos urbanos de baja densidad, pero sujeto a restricciones. Por ejemplo, no está permitido construir viviendas de adobe en aquellos lugares donde se esperan aceleraciones sísmicas muy altas o en las zonas inundables.
Si, de acuerdo con lo expresado, las ciudades densifican su población y se expanden hacia aquellos sectores que en los mapas de peligros están señalados con peligro bajo o medio y, además, las construcciones de albañilería y de concreto armado se efectúan con sujeción a las buenas prácticas de diseño y construcción desarrolladas en el Perú, se estima que, en caso de producirse un terremoto, los daños no deben pasar de un 5% del valor de la vivienda, aun frente a la ocurrencia de sismos de gran magnitud, si se trabaja en equipo y se aplican las recomendaciones incluidas en esta publicación.

Se recuerda que el costo total del uso de una vivienda durante su vida útil, consta de lo siguiente: el valor del terreno, el costo de la construcción y el costo del mantenimiento, factor en el que no se piena y que usualmente no es considerado por los propietarios ni los analistas de costos. Sin embargo, en el costo del mantenimiento debe incluirse, eventualmente, el valor de la reparación y el reforzamiento de la vivienda si esta resulta dañada por algún evento adverso.

En el caso de las 3,500 viviendas cuyos proyectos de reparación y reforzamiento se desarrollaron después del terremoto de Áncash de 1970, el costo de la reparación equivalió, en promedio, al 20% del valor de la vivienda. Si la construcción colapsa, obviamente, la pérdida es total, es decir el 100%. Teniendo en cuenta estas circunstancias, es obvio que debe considerarse el costo del mantenimiento. En el caso de la valorización del seguro de construcciones importantes, el costo de la prima depende de la pérdida máxima probable (PMP). Si la edificación está ubicada en un sector peligroso y es vulnerable, la evaluación de seguridad declarará costos altos para obtener seguros.

De lo expresado se deduce que, si para el desarrollo urbano de las ciudades peruanas se aplican los mapas de peligros y las viviendas se diseñan y construyen de acuerdo con las buenas prácticas desarrolladas en el país hasta la actualidad (inicios del siglo XXI), el impacto de aplicar el nuevo enfoque será verdaderamente extraordinario en la reducción de pérdidas humanas y materiales en el mediano y largo plazo, en futuros eventos naturales intensos que puedan afectar a nuestro país.

Entre las 16 ciudades ubicadas en la zona macrosismica que afectó el terremoto del 15 de agosto de 2007, cuyos mapas de peligros fueron desarrollados en el período 2001-2002, se encuentran incluidas las capitales provinciales de Ica, Pisco, Chincha y Cañete. Los estudios correspondientes a estas ciudades fueron validados mediante la revisión de los estudios geológicos, de mecánica de suelos, hidráulicos (inundaciones) y de efectos sísmicos, incluyendo los daños y su distribución geográfica, así como otros datos georreferenciados mediante el sistema de información geográfica (SIG). Los estudios de validación efectuados entre noviembre de 2007 y abril de 2008 fueron financiados por el Ministerio Británico para el Desarrollo Internacional (DFID, UK).
Dos días después de ocurrido el sismo del 15 de agosto de 2007, se inició el trabajo de campo con el objetivo de comparar los mapas de peligros desarrollados 6 años antes, con los efectos reales del sismo. Estas primeras inspecciones indicaron que había una buena correlación entre los mapas de peligros y el grado de daños y su distribución geográfica, como efecto real del terremoto.

Por ejemplo, gracias a los estudios realizados en años anteriores, se había ubicado en Pisco una franja de terreno paralela a la línea costera que tenía señalado un peligro muy alto por la acumulación de arena y por la amenaza de ser invadida por tsunamis. Asimismo, la parte central de la ciudad presentaba también peligro alto. Efectivamente, en estas zonas ocurrieron los daños más severos. En cambio, se encontró que en el sector sureste de la ciudad el peligro está evaluado como únicamente medio. Hacia este sector se ha recomendado expandir la ciudad de Pisco y canalizar la densificación de la población (F-2.12).

Esta circunstancia se dio a conocer, a mes- nos de dos semanas de ocurrido el sismo, en la mesa redonda "Pisco Modelo para Am- mar", organizada por el diario El Comercio, conducida por su director y en donde actúo como moderador el jefe de la página Opinión y Política. En un informe especial, publicado por dicho diario, se dio cuenta de las opiniones de las autoridades que participaron en la mesa redonda, entre ellas las del presidente del Consejo de Ministros, el jefe del INDECI y arquitectos y ingenieros especialistas en el tema.

En esta reunión, se difundió el mapa de peligros de Pisco (F-2.12), el cual demuestra que los daños más severos ocurrieron en los sectores que en dicho mapa están señalados con peligro muy alto y alto, tal como se puede apreciar en las fotos incluidas en la figura (F-2.13).

Estudios de validación efectuados por el equipo de trabajo del Programa Ciudades Sostenibles INDECI PNUD (ET PCS INDECI/PNUD) (F-2.14), así como los estudios de microzonificación desarrollados por el CISMID, de la Facultad de Ingeniería Civil de la UNI (CISMID FIC/UNI), ratificaron que el mapa de peligros PCS INDECI/PNUD desarrollado en 2001-2002, reflejaba bastante bien las características físicas de Pisco y sus zonas de expansión. Dichos estudios de vali- cación se efectuaron entre octubre y diciembre de 2007. Existe la base técnica pero debe apoyarse a los tomadores de decisiones.
MAPA DE PELIGROS DE PISCO 2001/2002

F-2.12 Mapa de peligros de Pisco desarrollado por el PCS-1E INDECE/PNUD en el período 2001-2002. Fue publicado por el diario El Comercio a fines de agosto de 2007, a menos de dos semanas de ocurrido el sismo del 15 de agosto. Allí se puede apreciar que Pisco debería densificar su población y expandirse hacia el sector sureste de la ciudad, a partir de su borde actual, porque esta zona presenta las mejores condiciones de costo y seguridad para su desarrollo.
DAÑOS SÍSMICOS EN LA CIUDAD DE PISCO

1. Grietas en la carretera Panamericana, cerca del cruce con el río Pisco. La humedad del suelo la debilitó.

2. Características del suelo de Pisco: suelo arenoso con la napa freática cerca de la superficie.

3. Plaza de Armas de Pisco. La nave central de la catedral colapsó.

4. Severos daños en un hospital.

5. Colapso del Hotel Embassy. Las columnas de los primeros pisos fallaron completamente.

MAPA DE PELIGROS VALIDADO DE PISCO

F-2.14 Mapa de peligros de Pisco, validado mediante la revisión de los estudios de 2001 - 2002. Se realizaron estudios confirmatorios de campo y de laboratorio y se revisó el informe anterior. Las investigaciones de validación se efectuaron entre octubre y diciembre de 2007. Se puede observar que los sectores están delimitados por líneas rectas quebradas. Esas divisiones pasan por los ejes de calles y avenidas, debido a las implicaciones tecnológicas de la ordenanza municipal que aprueba el mapa de peligros. Note la similitud con el mapa de peligros desarrollado seis años antes.
Tambo de Mora, por tener suelo fangoso conformado predominantemente con arena fina y limo y estar saturado de agua, tenía alta posibilidad de licuación de suelos. Las hipótesis eran correctas y esto fue lo que sucedió el 15 de agosto de 2007. (Fotos de F-2.15b, página siguiente.)

F-2.15a El mapa de peligros de la provincia de Chincha PCS-1E INDECI/ PNUD, desarrollado en 2001-2002, indicaba peligro alto por la considerable posibilidad de licuación de suelos en Tambo de Mora. Añadirse la amenaza de tsunami, se calificó con peligro muy alto.
1. En Tambo de Mora hubo licuación generalizada de suelos. Numerosas casas se hundieron unos 60cm. En Calle Nueva, se hundió una fila de viviendas.

2. Los muros, por su propia peso y el de los techos, se hundieron más que los pisos que se "levantaron", quedando las viviendas totalmente inhabilitables.

3. La cárcel de Tambo de Mora se hundió entre 50 y 60cm.

4. "Volcán de arena" producto de licuación masiva de la arena saturada de agua.

5. Iglesia evangélica de adobe en Tambo de Mora, que no sufrió daños por estar construida sobre suelo seco y firme.

6. Cerca de adobe, a unos 12 metros al sur de la iglesia, muy vulnerable, pero no sufrió daño debido a las características favorables del suelo. En la foto el Sr. Erick Vitruv de UNHABITAT.

DAÑOS EN TAMBO DE MORA Y EN EL ÁREA RURAL DE CHINCHA

F-2.15b Se muestran varias fotografías tomadas el 18 de agosto de 2007 cuando el agua impulsada por los volcanes de arena -claro signo de ocurrencia de licuación de suelos- aún estaba fresca. Sucesivas inspecciones técnicas realizadas posteriormente, permitieron ubicar un pequeño sector, dos cuadras al este de la Plaza de Armas de la ciudad de Tambo de Mora, donde una iglesia evangélica, construida con adobe, con el método tradicional, con muros altos, no sufrió daños. Para confirmar esta hecho, un largo y alto cerco de adobe, construido a unos 12 m al sur de la iglesia tampoco habría sufrido daños. Dichas construcciones están localizadas en el corredor de un pequeño promontorio que luego fue esquinado, resultando un suelo firme y seco. En la foto, aparece el Sr. Erik Vitruv de UNHABITAT, de la sede regional para América Latina y el Caribe, observando este claro efecto de microzona, en su visita al Perú, en diciembre de 2007. Los estudios de microzonificación que está efectuando el CISMID de la FIC/UNJ, por encargo del FORSUR, con financiamiento del Banco Mundial, deben ser suficientemente detallados para efectuar una operación de "fina cirugía" que permita proteger a las familias damnificadas, realizando mínimas reubicaciones y con la menor inversión posible.
En la figura (F-2.16) se presenta el mapa de peligros validado en los meses de noviembre y diciembre de 2007 de la ciudad de Ica y de los distritos aledaños. Entre enero y marzo de 2008, se desarrollaron los estudios para nuevas ciudades, que no habían sido incluidas en las investigaciones anteriores y que habían sufrido daños severos durante el terremoto. Es este el caso de Guadalupe, Los Aquejes, Pueblo Nuevo, Santiago, San Juan Bautista y Taie, cuyos estudios se efectuaron entre enero y fines de marzo de 2008.

Estos estudios, desarrollados por el FCS-INDECI/PNUD, fueron financiados por el Ministerio Británico para el Desarrollo Internacional (DFID, U.K., por su sigla en inglés).

Los resultados de la comparación del mapa de peligros 2001-2002 y el mapa validado muestran una gran coincidencia, con pequeñas diferencias, como, por ejemplo, el peligro que representa el canal La Acharina, que fue ensanchándose a ambos lados de sus márgenes porque, al humedecerse, el suelo amplifica un poco más las ondas sísmicas y su colmatación incrementa la probabilidad de inundaciones.

Queda claro que las principales amenazas sobre Ica son los sismos y las inundaciones, como las que ocurrieron en el verano de 1998, a raíz del fenómeno El Niño 1997-98.

En la figura (F-2.16) se puede observar: se puede observar sectores de peligro muy alto, que han sido calificados con este grado por dos causas:

a) Peligro de origen geológico, como es el caso del cerro Saraja, conformado por arena eólica, con pendiente pronunciada en algunos de sus flancos, donde pueden producirse altas aceleraciones sísmicas, inestabilidad de taludes y deslizamientos.

b) Peligro de origen climático, como se puede apreciar en la parte superior de la quebrada Cansas, por donde, en el verano de 1998, bajó un violento lluvia.

Estos sectores no deben utilizarse para fines urbanos y sería conveniente que el municipio provincial de Ica indicara, físicamente, con señales colocadas en el terreno, los límites de dichos sectores de alta peligrosidad, y anunciara mediante carteles informativos, la prohibición de construir en esos lugares. Para tener fuerza legal estas acciones tendrían que estar refrendadas mediante las respectivas ordenanzas municipales.

Los servicios que son esenciales en casos de desastre deben ubicarse en sectores de peligro bajo: hospitales, postas médicas, cuarteles de bomberos y, en la medida que sea posible, los centros educativos y las delegaciones policiales.

Por otra parte, se observa en el mapa de peligros de Ica un sector de peligro bajo donde, según el Reglamento Nacional de Edificaciones vigente, deben ubicarse las instalaciones esenciales en casos de desastre, como los hospitales, cuarteles de bomberos y, hasta donde sea posible, los centros educativos y las delegaciones policiales, cuyas ubicaciones también se deben fijar en función de la distribución de las poblaciones a las que sirven.
F-2.16 Mapa de peligros de Ica, validado entre noviembre y diciembre de 2007. En el recuadro inserto se muestra el mapa de peligros de San José de los Molinos. Estudios de validación financiados por el DFID del Reino Unido.
TRES DESASTRES DE ORIGEN NATURAL: TRES OPORTUNIDADES

Como ya se mencionó, anteriormente, el PCS-IE se inició a fines de 1998, cuando hubo necesidad de reconstruir las ciudades afectadas por El Niño 1997-98. El argumento más poderoso para convencer a entonces presidente del Consejo de Ministros, quien era, a su vez, presidente del Comité de Reconstrucción por El Niño, CEREN, a las autoridades locales y a las comunidades afectadas, fue el que había aportado la propia Naturaleza, con su devastadora indemnización.

Las inundaciones de las ciudades más importantes de los departamentos de Tumbes y Piura, causadas por El Niño 1997-98, generaron mapas que fueron, prácticamente, copias de los mapas de inundación generados por El Niño 1982-83. Estos mapas se desarrollaron a fines de los 90, durante el Decenio Internacional para la Reducción de Desastres Naturales (DIRDN) 1990-99, con fondos proporcionados por la Agencia de Cooperación Internacional del Japón - JICA, destinados a financiar diversas tesis profesionales de Ingeniería Civil desarrolladas en la UNI.

El terremoto de Arequipa, ocurrido el 23 de junio de 2001, ofreció la segunda oportunidad. Entre 1992 y 1995 se desarrolló el estudio del Escenario Sismático Regional (ESR) de la región suroeste del Perú, que comprende los departamentos de Arequipa, Moquegua y Tacna, dentro del marco del Programa de Mitigación de Desastres en el Perú.

Los organismos ejecutores fueron el Departamento de Asuntos Humanitarios de las Naciones Unidas (UNDHA/Geneva), con sede en Ginebra e INDECI. El estudio fue financiado por la Agencia Canadiense para el Desarrollo Internacional (CIDA).

El ESR 1992-95 predijo bastante bien donde ocurrirían los daños más severos en las ciudades de Arequipa, Moquegua y Tacna, a pesar de que los parámetros sismológicos de la hipótesis de trabajo fueron diferentes a los que realmente ocurrieron en el sismo de 2001. Para los efectos del estudio, se asumió, como hipótesis de trabajo que el epicentro se ubicaría en la zona de subducción de las placas de Nazca y Sudamericana, que está cerca de la región fronteriza entre Perú y Chile. Cuando ocurrió el terremoto de 2001, el foco del sismo se ubicó unos 730 km al norte, frente a las costas de Atico, Arequipa, y el sismo de 2001 liberó varias veces menos energía que el sismo hipotético.

Esto demostró nuevamente, que las características del suelo, topografía y geología locales, tienen una gran influencia en el grado de daños que causan los sismos y en la distribución geográfica de dichos daños. Debido principalmente a estos resultados, la jefatura del INDECI decidió expandir el PCS-IE a nivel nacional.

El terremoto de la región Ica del 15 de agosto de 2007, proporcionó la tercera gran oportunidad de verificación de los estudios. Los mapas de peligros desarrollados por el PCS-IE en 2001/02 demostraron, también en esta ocasión, su validez para el señalamiento de peligros. El grado de daños causados por el terremoto en Ica, Pisco, Chincha y Cañete y su distribución geográfica estaban adecuadamente "identificados" en los mapas de peligros desarrollados seis años antes. De esta forma, quedó plenamente comprobado que estos mapas constituyen la herramienta técnica esencial y de mayor utilidad para la formulación y ejecución del plan de desarrollo urbano de una ciudad, focalizado en su seguridad física.
RESULTADOS

Actualmente, existe consenso entre las autoridades del gobierno central y de los gobiernos regionales y locales, las comunidades afectadas y los urbanistas e ingenieros, en reconocer que los planes de desarrollo urbano deben basarse en sus respectivos mapas de peligros.

En este sentido, la reconstrucción de la zona afectada por el sismo de la región Ica se está efectuando con una atinada hoja de ruta: los nuevos planes de desarrollo urbano de Pisco, Ica, Chincha y Cañete ya se están basando en sus respectivos mapas de peligros validados.

El objetivo principal de este capítulo del manual es que, durante la reconstrucción de la zona afectada por el terremoto del 15 de agosto de 2007, las informaciones aquí incluidas sirvan para ubicar las nuevas viviendas en los lugares más seguros, y que aquellas que sufrieron deterioros sean reparadas y reforzadas en función de las características físicas del emplazamiento.

En ambos casos, los materiales de construcción utilizados y los métodos de diseño y construcción deberán tener en cuenta y ser concordantes con las características del suelo, geología y topografía del lugar donde se edificarán o reforzarán las viviendas.

Ahora es claro, por ejemplo, que sería un gravísimo error construir viviendas de cualquier tipo en los sectores calificados con peligro alto, como en algunos sectores de Los Aquijes y Táte, pues se trata de sectores con rellenos húmedos recientes.

Será necesario que las municipalidades adopten e incorporen los mapas de peligros en sus procesos de planeación urbana y tomen las acciones preventivas y correctivas para la reducción del riesgo.

El objetivo principal: ubicar las nuevas viviendas en los lugares más seguros, y reparar y reforzar aquellas que sufrieron deterioros en función de las características físicas del emplazamiento.
Viviendas sismorresistentes de adobe
DAÑOS PRODUCIDOS POR SISMOS

Un sismo de mediana o gran intensidad puede producir daños importantes y el colapso de las construcciones de adobe, con la consiguiente pérdida de vidas y daños materiales, especialmente si estas construcciones se encuentran en las cercanías del epicentro o sobre suelos blandos y húmedos, que amplifican las ondas sísmicas.

Los daños en las construcciones de adobe son de dos tipos: fallas en los muros por volteo fuera del plano y fallas por agrietamiento debido a fuerzas en el plano del muro.

FALLAS EN LOS MUROS POR VOLTEO FUERA DEL PLANO

F-3.1 Volteo de parte central del muro por flexión.

F-3.2 Falla por flexión y corte en extremo del muro, cerca de las esquinas, empezando por la parte superior, causada por fuerzas de inercias horizontales generadas, que actúan perpendicularly a la cara de las paredes.
Los muros no portantes son más vulnerables frente a este tipo de falla al no contar con el arriostré que aportan las vigas del techo, las cuales sirven de arriostré lateral, mientras no se exceda la fuerza de fricción (f).
En este grupo, otro tipo de falla es la fisura de separación con desgarre y volteo del muro fuera del plano, cuyo esquema de fuerzas se muestra a continuación.

FALLA EN LOS MUROS POR LA FUERZA HORIZONTAL EN SU PROPIO PLANO

Cuando la falla fuera del plano está controlada, ya sea porque los muros son gruesos o porque existe un amarre al nivel superior de los muros, se producen las típicas grietas en forma de X, debido a la fuerza cortante en el plano del muro. F-3.7, F-3.8.
RECOMENDACIONES PARA UNA BUENA PRÁCTICA CONSTRUCTIVA DE VIVIENDAS MEJORADAS DE ADOBE

RESPECTO A LA FABRICACIÓN DE LOS ADOBES:
Los adobes se fabrican con el barro que proviene del suelo disponible de la zona. No todos los suelos son buenos para fabricar adobes.

Un buen suelo para fabricar adobes debe tener entre 10 y 20 por ciento de arcilla; el resto es material granular o limoso. La arcilla seca provee resistencia al adobe. Muy poca arcilla hará que los adobes sean débiles y, por el contrario, demasiada arcilla hará que los adobes se fisuren al secarse.

Es recomendable agregar paja cortada en trozos de 5 cm en la proporción de una parte de paja por cinco de suelo, para controlar la fisuración del secado.

La mezcla de barro se debe dejar "dormir" por lo menos por dos días antes de la fabricación de los adobes para que la arcilla se active y ejerza su función de liga.

REFERENTE A LA CIMENTACIÓN:
No se deben hacer construcciones de adobe en suelos granulares sueltos, en suelos cohesivos blandos ni sobre arcillas expansivas. Tampoco en zonas propensas a inundaciones, cauces de aludes, aluviones o luviosos, o en suelos con inestabilidad geológica.

La cimentación tendrá una profundidad mínima de 60 cm y un ancho mínimo también de 60 cm.

En terrenos con pendiente, se debe cimentar siempre por debajo del nivel del terreno natural, es decir, en corte; nunca sobre material de relleno.
RESPECTO DE LOS MUROS:
Los muros no deben ser muy largos; la longitud máxima del muro ubicado entre los arriostrones verticales será 12 veces el espesor del muro.

Los vanos deberán estar preferentemente centrados en los muros donde se dejan las aberturas.

El ancho máximo de las puertas y ventanas (vanos) será de 1/3 de la longitud del muro.

La distancia entre el borde libre al arriostre vertical más próximo no será menor de 3 ni mayor de 5 veces el espesor del muro.

El espesor del muro es muy importante en la resistencia sísmica de las construcciones de adobe; los muros delgados pierden fácilmente su estabilidad y se desploman cuando se agrietan. Se recomienda un espesor de muro de 40 cm para alturas de hasta 3 metros.

Una práctica sumamente riesgosa es construir casas con ladrillo crudo, porque resultan paredes de muy poco espesor.

REFERENTE A LOS TECHOS:
Los techos deberán, en lo posible, ser livianos, distribuyendo su carga en la mayor cantidad posible de muros.

La transmisión de cargas debe ser vertical.

La estructura del techo debe estar firmemente conectada con los muros en los que se apoyan. F-3.12.

Es recomendable que el triángulo que se forma en la parte superior de las fachadas laterales, si el techo es a dos aguas, que es muy
inestable, sea reemplazado por quincha, ma-
dera u otro material liviano, pero firmemente
fijado a los muros y al techo.

Recordemos que el tapial o adobón es la
construcción más vulnerable, así como las
edificaciones de piedra unidas con barro, cuyo
uso debería ser erradicado.

MÉTODOS DE REFUERZO
PARA CASAS DE ADOBE

El refuerzo en las construcciones de adobe es
indispensable y debe proveerse a estas la re-
sistencia a la tracción que no poseen y la con-
tinuidad de esta resistencia, tanto horizontal
como verticalmente.

REFUERZO DE MUROS DE ADOBE
CON MALLA EXTERIOR NATURAL

El material de refuerzo es una malla com-
puesta por cañas, como elementos verticales,
y por sogas tipo “cabuya” (F-3.13), como
elementos horizontales, en ambos lados del
muro. La caña y la soga “cabuya” son conecta-
das a través del muro por soguillas de yute de
diámetro pequeño.

ATENCIÓN: En los
últimos años, en algunas
ciaudades del Perú, como
Ica y Trujillo, se está
construyendo con adobe
derimensiones reducidas,
del tamaño de ladrillos
cocidos, pero sin hornear.
Esta es una práctica
sumamente riesgosa que
se debe evitar.
Cada 40 cm se coloca la soguilla en la dirección horizontal.

Después de colocar las cañas verticales en ambos lados del muro, se atan con la soga cabuya de manera horizontal para formar una malla estructural. Las uniones de la malla son conectadas, a través del muro, con soguillas de yute. La soga debe ser continua horizontalmente y dar la vuelta por las esquinas y aberturas de puertas y ventanas.
Luego, se procede a enlazar la pared con barro y paja. F-3.15.

REFUERZO DE MUROS DE ADOBE CON MALLA ELECTROSOLDADA

El material de refuerzo está constituido por mallas electrosoldadas colocadas en ambos lados del muro y que deben estar interconectadas con alambre #8 (F-3.16). Luego, sobre ellas, se aplicará un tarajeo con mortero cemento-acera, en proporción 1:4.

Marcar las zonas que requieran ser reforzadas, simulando vigas y columnas de amarre. F-3.17

Abrir perforaciones de 5x5 cm (cada 50 cm) en los puntos de interconexión de las mallas verticales.

F-3.16

F-3.17

F-3.18
Insertar los conectores y tapar las perforaciones con mortero 1:4, humedeciéndolos previamente los huecos.

Clavar las mallas verticales contra los adobes y después las horizontales F-3.19.

Humedecer las zonas por teraje y, luego, paletear una primera capa de mortero; posteriormente, proceder al acabado final F-3.21.
REFUERZO DE MUROS DE ADOBE CON MALLA DE POLÍMERO

El material de refuerzo es una geomalla biaxial que tiene propiedades estándar de resistencia y rigidez. Las geomallas vienen en rollos de 3 o 4 metros de ancho por 50 o 75 metros de longitud.

Para amarrar la malla, se usará rafia plástica. F.3.23.

Se debe medir las dimensiones de las paredes y cortar la malla con una tijera gruesa tratando de cubrir, en forma, contínua, la mayor área del muro en forma horizontal. F.3.24.
La geomalla se ancla, al menos 1.5 cm en el sobrecimiento de concreto ciclope o pirca. F-3.25.

Al momento de levantar los muros se dejan 4 hilos de raña cada 30 cm, horizontal y verticalmente. F-3.26
Se coloca una solera de madera o de concreto armado en la parte superior de las paredes, firmemente unida en las esquinas. F-3.27.

Se ubica la malla en ambos lados de la pared y se amarra con los hilos de rafía previamente colocados. F-3.28.
Se ancla la geomalla a la viga solera de madera o de concreto. F-3.29.

Se procede a enlucir la pared, sea sólo con barro, con barro y paja o con barro y algún aglomerante como cal o yeso. F-3.31.

Se debe tener especial cuidado de colocar la malla en forma continua en las esquinas de los muros, tanto en las exteriores como en las interiores. F-3.32.

Las viguetas del techo se deben fijar a la solera. F-3.30.
REFUERZO CON MALLA INTERIOR DE CAÑA O SIMILAR

Se utiliza caña entera como refuerzo vertical y caña chancada o abierta como refuerzo horizontal, en las hiladas de mortero de barro.

Las cañas verticales deben ir ancladas a la cimentación y a la viga solera. F-3.33.

Las cañas horizontales se colocan cada cuatro hiladas, como máximo. F-3.34.
Las cañas horizontales se amarran entre sí en los cruces de los muros con nylon o algo similar. F-3.35.

Refuerzo con viga solera continua a la altura de dinteles y caña chancada en las juntas horizontales de barro. F-3.36.
La viga collar puede ser de suelo-cemento reforzada con madera. Se arma utilizando una estructura similar a una escalera echada, o también de concreto reforzado, del mismo ancho que el muro, 10 cm de altura, con dos varillas de acero 3/8 pulgada y estribos en forma de S de 1/8 pulgada, separados unos 25 cm.

Para incrementar la resistencia al corte de los muros de adobe, se recomienda la colocación de caña chancada en las juntas de construcción, cada tres hiladas por debajo de la viga collar y también cada dos hiladas por encima de la viga collar.

La continuación de los muros más allá de su cruce con otro muro, a manera de contrafuerte, además de incrementar la estabilidad de las paredes, permite anclar o fijar mejor los refuerzos de la viga collar y los refuerzos de caña de las juntas.

Donde existan aberturas, como ventanas y puertas, que reduzcan la resistencia al corte del muro, se recomiende colocar refuerzos de caña chancada cada 1 62 hiladas de adobe, dependiendo del tamaño de los vanos.

El techo debe apoyarse sobre una viga o tronco firmemente unido al muro, para anclarlo adecuadamente y para fijar las piezas de adobe de las últimas hiladas superiores, evitando así que caigan en caso de producirse un sismo intenso.
Viviendas de albañilería confinada
El propósito de este capítulo es proporcionar recomendaciones que permitan mejorar sustancialmente el comportamiento de las edificaciones de albañilería confinada frente a todo tipo de eventos adversos, especialmente los terremotos.

Estas recomendaciones se encuentran especificadas en la Norma E.070 “Albañilería” desarrollada por SENCICO, con la participación de especialistas en el tema, representantes de diversas instituciones nacionales, pero es importante comentarlas gráficamente para evitar errores. Por ello, se indicarán, también, las consecuencias de incumplir el reglamento y se proporcionarán las buenas prácticas a seguir.

La albañilería confinada se caracteriza porque los muros están íntegramente bordeados por elementos de concreto armado, columnas y vigas. F-4.1. Primero, se construyen los muros y, luego, las columnas de confinamiento para que el concreto rellene bien todos los huecos y tenga buena adherencia en la columna y en la cara lateral del muro.

Estas recomendaciones se encuentran especificadas en la norma E.070: “albañilería”.
Las estructuras de las edificaciones de albañilería confinada (F-4.2) están compuestas por:
1. Cimentación corrida de concreto ciclópeo.
2. Sobrecreimiento de concreto ciclópeo con piedras medianas.
3. Muro de albañilería.
4. Columnas de confinamiento.
5. Losa de techo, que comprende las vigas soleras que corren encima de los muros y dinteles.

A continuación se incluyen comentarios sobre cada uno de estos elementos constructivos.

LA CIMENTACIÓN

La cimentación (F-4.3) que usualmente se emplea en las edificaciones de albañilería confinada ubicadas en suelos de calidad intermedia o de buena calidad es de concreto ciclópeo, compuesto por una mezcla de concreto con resistencia a compresión $f'c = 100$ kg/cm2 (o cemento-hormigón 1:10) y un 30% de piedra con tamaños variables de hasta 25 cm.
El perfil del cimiento de concreto ciclópeo ("2x") debe ser, por lo menos, el doble de la longitud en volado del cimiento ("x"). F-4.4.

En suelos de baja calidad, como los de arena suelta, se debe emplear cimientos de concreto armado muy rígidos, como la viga T invertida que aquí se muestra en la foto F-4.5.

EL SOBRECIMIENTO

El sobrecimiento es de concreto ciclópeo no reforzado, con una mezcla de cemento-hormigón 1:8, más 25% de piedras con un tamaño máximo de 7.5 cm. Debe tener el grosor del muro y abarcar una altura, de por lo menos 30 cm, por encima del nivel natural del terreno, a fin de proteger a la albañilería de la humedad natural del suelo que, si contiene sales, deteriora rápidamente las unidades de ladrillos. En la construcción del sobrecimiento debe emplearse encofrados. Aproximadamente unas tres horas después de haberse vaciado el concreto, la zona que va a ser ocupada por el muro debe rayarse en una profundidad de unos 5 mm, a fin de mejorar la unión albañilería-sobrecimiento.
Como el concreto de las columnas es de mejor calidad que el sobrecimiento (F-4.6) y teniendo en cuenta que a través de la columna pasa una carga importante producida por el terremoto, el concreto de la columna debe circular en su llenado a través del sobrecimiento hasta llegar al cimiento, agregando estribos de confección espaciados a 10 cm en esquina.

Con esta medida, se trata de evitar la posible trituración del sobrecimiento (F-4.7), carril de refuerzo, lo que haría que la columna se quede sin base contra la cual reaccionar. Lo indicado no se aplica cuando el concreto del sobrecimiento presenta la misma calidad que el de las columnas.
LA UNIDAD DE ALBAÑILERÍA

En la construcción de los muros confinados es posible emplear ladrillos de arcilla, silicocalcáreos de concreto y hasta de siller, con tal de que califiquen como unidades "sólidas". F-4.8. Lo último es muy importante, pues los ladrillos con excesivos huecos son muy frágiles y poco resistentes al esfuerzo de corte generado por los sismos.

No se debe emplear unidades huecas, ni ladrillo pandereta, ni bloques vacíos de concreto, porque estas unidades se trituren fácilmente después de que se generan las grietas diagonales en los muros durante el sismo, perdiendo notablemente su resistencia y rigidez lateral. F-4.9, F-4.10

F-4.9 Bloques de concreto vibrado vacíos. Estas unidades fueron creadas para ser usadas en la construcción de la albañilería armada rellena con grout.
En la construcción de los muros confinados no deben emplearse unidades huecas, ni ladrillo pandereta, ni bloques vacíos de concreto, porque estas unidades se trituran fácilmente.

Asimismo, el uso de ladrillos *king kong* artesanal se encuentra limitado a edificaciones de hasta dos pisos, porque también se trituran cuando deben afrontar los terremotos. Es importante tener en cuenta que este tipo de ladrillo se deteriora ante la acción de la intemperie, por lo que debe protegersele con un tarajeo de cemento. F-4.11.
En suelos húmedos o salitrosos, es conveniente, antes de construir la cimentación, impermeabilizar las superficies del suelo con el que estará en contacto. Puede utilizarse brea o un plástico grueso para que la humedad no penetre en el muro F-4.12.

En suelos húmedos o salitrosos, es conveniente, antes de construir la cimentación, impermeabilizar las superficies del suelo con el que estará en contacto.

TRATAMIENTO DE LOS LADRILLOS ANTES DEL ASENTADO

Producto de la cocción en los hornos, los ladrillos de arcilla presentan suciedad que debe ser limpiada con escobilla o aire comprimido antes de asentarlos, ya que el polvo reduce la adherencia ladrillo-mortero. Durante esta operación, deben eliminarse aquellos ladrillos que presentan grietas o estén mal cocidos F-4.13.
Luego de limpiar de arcilla los ladrillos y varias horas antes de asentarlos, se les debe regar durante media hora. El objetivo de esta operación es disminuir la elevada succión que ellos presentan y que el agua retenida en su núcleo sirva para curar el mortero. De otro modo, si se les asenta secos, absorberán rápidamente el agua del mortero endureciéndolo (F-4.14). Los ladrillos silicocalcáreos y de concreto sólo necesitan ser limpiados, no debe regárselos porque su grado de succión en estado seco es bajo.
EL MORTERO

El mortero tiene la función de achicar los ladrillos en las distintas hiladas del muro. Está compuesto por cemento (Portland o Pozolánico), arena gruesa y agua potable. La clasificación de los componentes se hace en volumen y, usualmente, se emplea una mezcla seca cemento-arena 1:4, revuelta con una pala hasta alcanzar un color uniforme. F-4.15.

La arena gruesa debe ser limpia y libre de sales.

La extensión del mortero sobre una hilada de ladrillos no debe ser mayor de 80 cm para evitar que se endurezca. F-4.16.

El grosor de la junta no debe ser mayor de 1,5 cm para evitar pérdidas de resistencia en la albañilería. La foto F-4.17 muestra este error constructivo.
SECRETOS DEL OFICIO

Una manera práctica de controlar si el mortero ya está listo para ser utilizado consiste en sacudir verticalmente, la mezcla colocada sobre un badilejo, para luego girarlo 180°. Si la mezcla queda adherida al badilejo durante 1.5 segundos, la cantidad de agua utilizada es correcta.

El endurecimiento de la mezcla ('fragado') se inicia después de una hora, aproximadamente, dependiendo del clima. Durante ese tiempo es necesario echarle agua, pero una sola vez, operación a la que se le denomina "retemplado".

CONSTRUCCIÓN DE LA ALBAÑILERÍA

Los tipos de aparejo o amarre que es posible emplear son los de "soga", "cabeza" y el "amarre americano". En cualquiera de los casos, las juntas verticales entre dos hiladas consecutivas no deben coincidir. (F-4.18)

El primer paso consiste en limpiar y humedecer la superficie rayada del sobrecimiento o losa de techo. No debe emplearse lechada de cemento porque tapona los poros del concreto. Luego, se aplica el mortero y se asientan los ladrillos ubicados en los extremos del muro. Estas unidades reciben el nombre de "ladrillos maestros" y son las únicas donde se utiliza un escantillón (regla graduada con la altura de las hiladas) para controlar el grosor de la junta horizontal y una plomada para controlar la verticalidad. (F-4.19)
Posteriormente, se corre un cordel por el borde del muro, conectando a los dos ladrillos maestros. Este cordel sirve para alinear horizontalmente los ladrillos ubicados en la parte interna del muro, los que se asientan al presionar verticalmente para que el mortero penetre en el interior de las perforaciones del ladrillo. Esto permite crear llaves de corte que elevan la resistencia al corte-cizalle de cada junta horizontal.

Luego de terminar el asentado de una hilada, se llenan las juntas verticales con el badilejo (F-4.20), usando un fraguador (tablilla) como encofrado. En el caso de que se deba retirar un ladrillo durante el asentado, se asienta uno nuevo y se lava el ladrillo retirado, a fin de guardarlo para la siguiente jornada de trabajo. Adicionalmente, el mortero que caiga sobre un plástico limpio, puede ser reutilizado siempre y cuando esté fresco.

Durante la construcción, no debe olvidarse la instalación del refuerzo horizontal o las mechas de conexión columna-albañilería, en el caso de que estén especificados en los planos estructurales F-4.21.
JORNADAS DE TRABAJO
El proceso de asentado se repite hasta alcanzar una altura máxima de 1.3 m. F-4.22. No es recomendable construir más hiladas, debido a que el mortero de las hiladas inferiores aún está fresco y puede aplastarse, con el peso de los superiores, desalineando el muro. Al culminar la primera jornada de trabajo, debe limpiarse el muro con una plancha, pasándola de abajo hacia arriba.

CONEXIÓN ALBAÑILERÍA-COLUMNA
La conexión entre la albañilería y la columna puede ser dentada o a ras. Cuando se utiliza una conexión dentada, la longitud del diente no debe exceder de 5 cm, para que no se formen cangrejeras debajo del diente (F-4.23) y para que este no se fracture durante la compactación del concreto. En este caso, los desperdicios de mortero que hayan caído sobre el diente, deberán limpiarse antes de encofrar las columnas.

En una jornada de trabajo no debe levantarse más de 1.30 m de altura del muro.
Los tres problemas que genera la conexión dentada pueden solucionarse empleando una conexión a ras, pero agregando mechas de anclaje con varilla de acero de ¼" (F-4.24). Estas mechas deben quedar embutidas en la albañilería una longitud no menor de 40 cm y penetrar en la columna, por lo menos 12.5 cm, para luego doblar verticalmente 10 cm. De existir albañilería al otro lado de la columna, la mecha deberá atravesar la column a y anclar en ambos muros.

TUBERÍAS EN MUROS DE ALBAÑILERÍA

El paso de las tuberías, con diámetros mayores de 55 mm a través de un muro portante, debilita considerablemente la resistencia de los muros frente a los sismos. En su lugar, se recomienda que estos tubos queden embutidos en falsas columnas, en un espacio para rellenar con grout (cemento-arena-conchilla 1:2½:1½ muy fluido), debiéndose emplear chicotes de ¼" que conecten a las partes divididas del muro, y anillar el tubo con alambre #16. (F-4.25).
Cuando las tuberías son de un diámetro menor de 55 mm, tampoco debe picarse el muro, sino más bien debe dejarse un espacio durante su construcción para, luego, ser rellenado con grout. Estas tuberías no deben correr horizontalmente a lo largo del muro, porque crean un plano potencial de falla por deslizamiento y concentración de esfuerzos en la sección reducida. F-4.26.

LAS COLUMNAS DE CONFINAMIENTO

DETALLES DEL REFUERZO Y TUBERÍAS

Los traslapes del refuerzo vertical y los ganchos a 135° de los estribos crean congestión de refuerzos en los extremos de las columnas, que podrían generar cangrejas en el concreto, especialmente en las columnas de poca dimensión, como las que se usan en los muros con aparejo de soga. Por ello, para esas columnas, se recomienda traslapar el refuerzo vertical a media altura y usar estribos con 1 y 3/4 de vuelta adicional amarrando sus extremos con alambre #16. (F-4.27). De ninguna manera deben emplearse estribos abiertos a 90° porque no confinan al concreto.
En ningún caso es conveniente que existan tuberías de gran diámetro en el interior de las columnas, ni al costado de ellas porque reducen su área y se debilita la integración albañilería-columna. F-4.28.
CONSTRUCCIÓN DE LAS COLUMNAS

Antes de encofrar las columnas, es necesario limpiar y humedecer los bordes verticales de la albañilería y la base de las columnas, para evitar juntas frías y que el agua quede empozada en la base. Los encofrados deben ser herméticos, capaces de soportar la presión lateral del concreto en estado líquido y deben guardar verticalidad. Este concreto debe tener la resistencia especificada en los planos de estructuras (mínimo f’c = 175 kg/cm²) y, para el caso de columnas pequeñas, es preferible que la piedra chancada sea de ½ pulgada, para evitar la formación de cangrejas.

El concreto debe ser vaciado por capas de unos 50 cm de altura y cada capa debe ser compactada con una vibradora (F-4.29) o una varilla lisa de ½ pulgada de diámetro. No debe sacudirse el refuerzo vertical, porque podrían formarse vacíos entre la varilla y el concreto. Pasadas unas tres horas del vaciado, la parte superior del concreto de las columnas debe rayarse.

Al día siguiente de vaciado, las columnas se pueden desencofrar y curar regándolas con agua a razón de dos veces al día durante tres días consecutivos. En el caso de que se presenten cangrejas pequeñas en la zona intermedia de alguna columna, pueden limpiarse las partículas sueltas, humedecer la zona y taponarlas con mortero 1:3. Pero, si las cangrejas son grandes y están localizadas en los extremos de la columna, deberá picarse esa zona, limpiarla, humedecerla y vaciar concreto nuevo empleando un encofrado en forma de embudo, de tal forma que el concreto nuevo rebalse por la cara externa de la columna, para que, al secar, no se despegue del concreto existente. F-4.30.
VIGAS Y LOSA DE TECHO

DETALLES DEL REFORZADO EN VIGAS

En las edificaciones de albañilería confineda existen dos tipos de viga (F-4.31):

1. La solera (o collar) es una viga que, al correr encima de los muros, no se deforma, pero sirve para transmitir las cargas desde la losa del techo hacia el muro, así como para arrastra horizontalmente a los muros.

2. El dintel es la viga que cubre los vanos de puertas y ventanas, por lo que se deforma.

Las soleras no requieren ser peraltadas; su peralte puede ser igual al grosor de la losa de techo, mientras que los dinteles deben tener un peralte adecuado, de hasta 60 cm.
Debe evitarse la congestión del refuerzo en los nudos para que no se formen cangrejeras. El traslape del refuerzo debe hacerse en el interior del muro. F-4.32.

Asimismo, cuando las vigas pierden continuidad, el penalte de la columna de apoyo deberá ser suficiente como para anclar el refuerzo horizontal, doblando con un gancho a 90° F-4.33.

En adición, el refuerzo longitudinal no debe doblarse, porque para que una varilla trabaje correctamente debe estar recta. F-4.34.
Tanto el refuerzo de las vigas, como el de las columnas y la losa del techo, deben tener un recubrimiento de por lo menos 2 cm, cuando se tarajea el muro o techo, y de 3 cm cuando el muro es caravista, para prevenir la corrosión del refuerzo.

CONSTRUCCIÓN DE VIGAS Y LOSA

Es importante indicar que el concreto de las vigas debe vaciarse en simultáneo con el de la losa (F-4.36), para garantizar una adecuada integración entre estos elementos; de otro modo, cuando el concreto de las vigas se vacía en dos etapas (F-4.37), se formará una junta de construcción entre la losa y la parte intermedia de la viga y un plano potencial de falla por deslizamiento entre estos elementos, cuando ocurran terremotos.

Enseguida, el concreto de la losa se enraza con una regla y, pasadas unas 3 horas, se rayan las zonas donde se construirán los muros del piso superior. Es importante curar el concreto durante siete días consecutivos, ya sea con yute húmedo (regándolo dos veces al día), o formando arroceras. De observarse grietas por contracción de secado en la superficie del techo, debe taponárselas con una lechada de cemento-arena fina 1:3, o de cemento puro si la fisura es fina.

Después, se continúa con la construcción de los muros del piso superior; repitiéndose el proceso señalado, hasta, finalmente, tarajar las paredes y proceder con los acabados.
El concreto de las vigas debe vaciarse en simultáneo con el de la losa, para garantizar una adecuada integración entre estos elementos.

MURO PORTANTE CONFINADO

Para que un muro confinado se considere portante de carga vertical y sísmica, es necesario que tenga continuidad vertical, a fin de que los esfuerzos se transmitan de un piso al otro hasta llegar a la cimentación. Cuando los muros carecen de continuidad vertical, actúan como tabiques y deben ser amarrados a la estructura principal, con mallas o columnetas para evitar que se vuelquen. F-4.38.

ALFÉIZARES DE VENTANA

Cuando los alféizares de ventana están integrados a la estructura principal, es probable que se formen fisuras en esa unión por la diferencia de cargas verticales existente entre el muro portante y el alféizar (con carga nula), quedando el parapeto suelto; por esta razón, se aisla el cerco de los patios o jardines de los muros portantes (F-4.39).
Asimismo, al perder altura el muro portante, se magnifica su rigidez lateral, absorbiendo un mayor porcentaje de la fuerza sísmica, lo que provoca su falla. Por ello, se recomienda aislar los alfizares arriostrándolos con columnetas para evitar su volteo por cargas sísmicas transversales a su plano. Sin embargo, si un análisis estructural detallado indica que el muro corto es capaz de absorber la porción de corte del entrepiso que le corresponde, no es necesario aislar el parapeto.

ESCALERAS

Muchas veces el descanso de la escalera se apoya sobre la albañilería. Durante los sismos, la escalera empuja al muro generando una carga concentrada que punzona la albañilería. Este empuje debe ser absorbido por columnetas.

Sin embargo, es mejor lograr una solución espacial integral. La escalera perforó el muro porque la casa era muy flexible en esa dirección y no tenía ninguna columna. Si la casa se rigidiza en la dirección flexible incrementando...
la densidad de muros y se le agregan columnas con su mayor dimensión en la dirección flexible, no se producirán daños como el que se muestra en la F-4.41.

ESTUDIOS DE DAÑOS EN EDIFICACIONES DE ALBAÑILERÍA EN FUNCIÓN DE LA DENSIDAD DE MUROS Y COLUMNAS DE REFUERZO

Si los techos de las edificaciones de albañilería son rígidos y actúan como elemento diafragmático, el método de análisis sísmico se simplifica de manera significativa y la resistencia sísmica se puede estimar de dos formas:

- Por la densidad de muros, de acuerdo con sus longitudes, y
- Por la densidad de muros, de acuerdo con el área de los muros resistentes.

DENSIDAD DE ACUERDO CON LA LONGITUD DE LOS MUROS

El método de análisis se simplifica sustancialmente ya que la rigidez total del edificio es prácticamente igual a la suma de las rigideces por corte de cada uno de los muros. Se asume que la rigidez total del edificio es proporcional
La longitud de los muros en la dirección analizada, despreciándose la contribución de los muros perpendiculares, ya que su mayor resistencia lateral en la dirección considerada es en flexión y es muy pequeña, comparada con la rigidez al corte de los muros en la otra dirección.

Con esta hipótesis, se analizaron unas 5 mil edificaciones en la década del 70, muchas de ellas dañadas por los sismos de Áncash (1970) y de Lima (1974). Asimismo, para tener una alternativa a esta metodología, se analizaron edificaciones dañadas por el sismo de 1979 en Arequipa, considerando las áreas resistentes en lugar de las longitudes de los muros. Los resultados de ambos estudios fueron consistentes, es decir, no hay diferencia en considerar uno u otro caso.

Los estudios en Arequipa fueron efectuados por el ingeniero Pablo Ortuño, como tesis profesional de ingeniería civil en la FIC/UNI. El ingeniero Ortuño consideró, además, otras dos variables: técnicas de construcción y antigüedad de las construcciones. El material que se estudió predominantemente fue el sillar.

Los resultados mostrados en gráficos de densidad de muros en porcentaje de área versus daños son dos líneas diagonales paralelas; la más baja, que incluye las construcciones más modernas indicando menores daños, y la más alta, que incluye las viviendas más antiguas que sufrieron más daños. La conclusión es que los daños disminuyen conforme se incrementa la densidad de muros en porcentaje del área de construcción y que los daños también fueron menores con la mejora de las técnicas constructivas y menor antigüedad.

La tesis del ingeniero Ortuño fue premiada como la mejor de la especialidad a nivel nacional en el año 1980. (Ver F-3AL, p 147 del libro Reducción de Desastres por J. Kuroiwa.)

En el Capítulo V, se presenta la densidad de muros en porcentajes, en función del área de muros/área construida de acuerdo con la Norma de Abanleriá para las tres regiones sísmicas del Perú y la clasificación de suelos.

La densidad de muros es la relación entre el área resistente de muros y el área techada.
F-4.42. Vivienda típica de albañilería en el área de Chimbote. En la parte inferior se ha calculado la densidad de muros del primer piso. Obsérvese el gran desequilibrio en las direcciones "x" e "y". Nótese que en la dirección "x" los muros son de 15 cm. Si se considera como espesor unitario 25 cm, el factor de corrección es 15/25 = 0.6. Por ello, la longitud del muro ha sido multiplicada por 0.6. En cambio, en la dirección "y" los muros son de 25 cm, es decir, el espesor unitario. En este caso, el factor es 1. Por ello, basta sumar en esa dirección la longitud total de muros en la dirección "y".

<table>
<thead>
<tr>
<th>Dirección</th>
<th>Muros (cm)</th>
<th>Espesor unitario (cm)</th>
<th>Factor de corrección</th>
<th>Longitud total multiplcada por factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15</td>
<td>25</td>
<td>0.6</td>
<td>15 cm</td>
</tr>
<tr>
<td>y</td>
<td>25</td>
<td>25</td>
<td>1</td>
<td>25 cm</td>
</tr>
</tbody>
</table>
En la figura F-4.42 se observa una casa de dos pisos sobre un terreno de 8 m x 20 m con el defecto típico de las viviendas diseñadas sobre lotes alargados. El resultado es que en la dirección "y" se tienen 2 "tíneles" resistentes en esa trayectoria. El de la izquierda, conformado por el garaje, patio de servicio y cocina, y el otro, por la sala comedor. Se logra un nivel aceptable de calidad sismorresistente si se agregan columnas en lugares estratégicos y no separadas más de 5 o 6 m y si en la dirección "x" se arman "pórticos" de C.R., con columnas de 20 x 25 cm y con la mayor dimensión en la dirección flexible, tanto en la fachada principal como en la posterior.

El muro que divide el garaje y el patio se debe construir de mayor espesor (aparejo de cabeza con ladrillos sólidos), colocándose una pequeña placa de C.R. de 25 x 40 cm, que suba hasta el segundo piso. Al efectuarse estos cambios, el grado de daños baja en 2 ó más grados, tal como se demostrará enseguida.

Debajo de dicha figura, se muestra la metodología para el cálculo de la densidad de daños y un ejemplo de su aplicación. Como se puede observar, el cálculo se efectúa sumando primero la longitud de todos los muros en ambas direcciones y luego, se divide entre el área total de la edificación, por encima del nivel considerado. En una casa de dos pisos, para el cálculo del primer piso se debe considerar la suma de las áreas de los dos pisos.

El gráfico F-4.42 muestra los resultados de los estudios efectuados principalmente en el área de Chimbote, entre 1970 y 1973. Puede verse allí una clara correlación entre densidad de muros y grado de daños. Los daños se reducen linealmente cuando la densidad de muros crece. Para la misma densidad de muros, la presencia de columnas y vigas de amarre de CR reduce sustancialmente los daños.

Se muestran los resultados de un ejemplo de aplicación para una vivienda de dos pisos que corresponde a un caso real. Con los valores obtenidos de 1,77 cm/m² en la dirección "x" y 1,67 cm/m² en la dirección "y". Si ingresamos al gráfico F-4.43, en el caso sin columnas, para la dirección x, se produce colapso parcial, lo que coincide con los daños mostrados en la foto F-4.44. Pero, aun para el caso de la dirección "y" (1,67 cm/m²) sin columnas, los daños llegan casi al nivel 3 o sea grietas y desplazamiento de algunos muros, lo cual es inaceptable.

En cambio, si la vivienda tiene columnas de amarre y vigas continuas sobre los muros, dentro del aligerado, conformando un sistema espacial continuo y con las mayores dimensiones de las columnas (25 cm) en la dirección flexible de la casa, los daños son ligeramente superiores al grado 1 en la dirección "y" (1,67 cm/m²) y de casi 2 en la dirección "x", lo que sólo provoca fisuras, algo que podría ser aceptable.
Todo esto muestra la gran influencia que tienen las columnas y vigas de C.R. en reducir los daños sísmicos, pero es muy importante que la dimensión de la columna en la dirección flexible tenga la suficiente longitud para que, con la viga de amarre, los otros elementos rigidizantes que se le adicionen a las viviendas formen un conjunto espacial continuo que atraiga hacia sí el mayor porcentaje de la cortante sísmica.

La foto F-4.45 muestra un conjunto de viviendas; las dos de la izquierda (verde y rosa), que sólo tienen columnas en las esquinas, mas no en el hall de entrada, donde los muros fallaron por tracción diagonal, por lo que se considera que los muros no están confinados; en cambio, la casa del extremo derecho (amarilla) tiene la fachada completamente confinada con columnas y vigas y no ha fallado, lo que demuestra, gráficamente, la efectividad de las columnas y vigas de amarre.

Las columnas y vigas de concreto reforzado tienen una gran influencia en la reducción de los daños sísmicos, cuando están integradas en un conjunto integral continuo - compacto.
El gráfico F-4.46a muestra la planta sin reforzar y la elevación principal con las fallas que ocurrieron.

En la figura F-4.46b se presentan, esquemáticamente, los refuerzos sugeridos como ejemplo ilustrativo.

EJERCICIO DE APLICACIÓN:

Calcule la densidad de muros de la vivienda del gráfico F-4.46. Para simplificar el problema, considere que todos los muros tienen 20 cm de espesor; en consecuencia, el factor de corrección es 20/20, es decir, 1 (uno). Por lo tanto, para calcular la densidad basta sumar la longitud de muros en la dirección considerada. Seguidamente, utilizando el diagrama del cuadro F-4.43, estime el nivel de daños en las direcciones “x” e “y”. Luego, agregue columnas de refuerzo y vigas de amarre, y vuelva a entrar al gráfico para estimar nuevamente los daños esperados. ¿Cuáles son las conclusiones al comparar los resultados de ambos casos?

Las fallas de las viviendas de la foto F-4.45 y del gráfico F-4.46a, que son grietas diagonales, pueden ser explicadas mediante la foto F-4.48, donde se muestra una edificación de dos pisos. Si el suelo se mueve bruscamente hacia el lector, las masas reaccionan en sentido contrario. En el segundo piso, el corte será \(H_2 = F_2 \) y en el primer piso \(H_1 = F_2 + F_3 \), tal como se muestra en el diagrama que está a la derecha de la figura F-4.47.

La deformación lateral de un rectángulo por corte convierte en un paralelogramo a cada uno de los rectángulos de los muros laterales. La diagonal que se alarga representa la tensión del muro a lo largo de dicha diagonal. Como la albañilería tiene baja resistencia a la tensión se forma una grieta diagonal en la dirección perpendicular a dicha fuerza tensión, que se llama falla por tracción diagonal.

Una fracción de segundos más tarde, cuando el movimiento del suelo cambia de sentido, se produce la otra grieta, formándose la denominada Cruz de San Andrés. Como el corte en el primer piso \(H_1 \) es casi el doble que \(H_2 \), las grietas en el primer piso son más pronunciadas.

En el lado derecho del gráfico F-4.47 se presenta el diagrama de corte donde se puede observar que, en el primer piso, es casi el doble que en el segundo, lo que ayuda a comprender por qué los daños del Hospital del Seguro, en Chimbote, en 1970, fueron más severos en la primera planta (F-4.48) que en el segundo piso. Esto ayuda a com-
prender mejor por qué al calcular la densidad de muros del primer piso, se divide entre la suma de las áreas construidas del segundo piso más el área construida del primer piso y por qué la resistencia a la fuerza sísmica lateral del primer piso debe ser mayor que la del segundo piso.

F-4.47 Fuerzas de inercia F_2 y F_1 y diagrama de corte en el segundo y primer piso.

EJEMPLO ILUSTRATIVO
Un edificio de dos pisos, ubicado en el distrito de Miraflores, reforzado después de ser afectado por el sismo de Lima de 1974.

F-4.48 Hospital del Seguro de Chimbote, que falló en el sismo de 1970. Nótese que en el primer piso la falté es notoriamente mayor que en el segundo, situación explicada por el diagrama de corte de la figura anterior. De allí la recomendación de sólo emplear ladrillos sólidos en el primer piso de las construcciones de dos pisos, debido a los grandes esfuerzos de corte que se generan en los pisos bajos de las edificaciones.

F-4.49 Edificio en proceso de reforzamiento.
FALLAS DE CERCOS Y ALTERNATIVA PARA SU REFORZAMIENTO

Los cercos, en casos de sismo, se vuelcan o fallan por cargas de inercia que se generan perpendicularly a sus caras, debido a lo siguiente:

- Por carecer de columnas y vigas de amarre en su parte superior (F-4.51).
- Porque, aun teniendo columnas, carecen de vigas de amarre en su parte superior (F-4.52). Además, debido a que los cortes y momentos, por las cargas aplicadas perpendicularly a sus caras, son mayores cerca de las esquinas, se producen grietas que se propagan de arriba hacia abajo.

F-4.50 Vista aérea del edificio reforzado. Nótese la continuidad de las columnas y las vigas invertidas en el tacho.

F-4.52 Cerco con columnas de CR. Falla por flexión - por fuerzas sísmicas generadas perpendicularly a la cara del muro - y por carecer de vigas de amarre. Trujillo, Perú, 1970.
PROPUESTA PARA REFORZAR LOS CERCOS

Muchas veces es necesario cercar terrenos muy extensos y el costo puede ser elevado. Teniendo en cuenta que, tal como se ha mostrado anteriormente, la fuerza sísmica actúa con mayor severidad perpendicularly a su cara, haciéndola fallar, es necesario darle al muro, en esa dirección, una mayor rigidez y resistencia al vuelco.

La alternativa que se muestra en el gráfico F-4.53 consiste en darle a las columnas y a las vigas la mayor dimensión en esa dirección, pero sin elevar los costos. Esto se obtiene utilizando muros con aparejo de soga, con lo cual se consigue un gran ahorro en ladrillos o bloques de concreto. Se puede colocar el muro alineado alternativamente a la cara de las columnas, para darle simetría respecto al eje de vuelco del muro. De esta forma se logra, además, un cambio volumétrico que puede hacerlo estéticamente atractivo. Esta solución puede aplicarse a cercos construidos con ladrillos o bloques de concreto, lográndose un significativo margen de economía y seguridad.

F-4.53 Una buena alternativa para construir un cerco seguro y económico.

F-4.54 El cerco del colegio de Sunampe, Chinchas tiene la apariencia del cerco recomendado en esta manual, pero, en lugar de una columna de concreto reforzado, tiene una mocheta de ladrillo en aparejo de cabeza. ¿Falla en el diseño? ¿constructor no honesto? ¿falla en la supervisión? En los centros educativos no puede permitirse este tipo de fallos, por el riesgo al que se expone a los estudiantes.
CAPÍTULO V
Viviendas de albañilería armada
Las viviendas de albañilería armada usan los bloques de concreto como materiales principales. F-5.1. Estos bloques forman muros con refuerzos distribuidos, para lo cual se unen los bloques con mortero y se llenan los alvéolos, donde ya están colocados los refuerzos de acero, con concreto líquido. El muro es muy resistente para las cargas de gravedad y los sismos, pero debe estar correctamente construido para resistir las demandas inducidas por cargas sísmicas intensas.

EL BLOQUE DE CONCRETO

Los bloques son elementos constructivos formados a partir de mezcla (manualmente o con maquinaria) en matrices o moldes, utilizando como materia prima agregado grueso, cemento, agregado fino y agua en proporciones tales que generan una mezcla trabajable en el molde. F-5.2.

Esta mezcla es vaciada en el molde, luego, vibrada manualmente o con maquinaria y comprimida. Finalmente, se desmoldea, fragua y cura.

Estos bloques son utilizados en muchas localidades de la costa y la sierra, como Moquegua, Tacna, La Oroya y Cerro de Pasco, entre otros.

La albañilería conllevada con bloques de concreto requiere de vigas y columnas de confinamiento, con lo que se concentra el refuerzo en los bordes del muro. En el caso de la albañilería armada con bloques de concreto, el refuerzo se distribuye a lo largo del muro en los alvéolos de las unidades, y el refuerzo horizontal se aleja en las juntas horizontales, entre hilada e hilada.

TIPOS DE BLOQUES

Las dimensiones de los bloques de concreto varían según su uso:

Los bloques destinados a resistir las cargas axiales provenientes de los techos de pisos superiores tienen, generalmente, espesores de paredes entre 2.5 y 4.0 cm, con 39 cm de largo, 19 cm de ancho y 19 cm de alto, y se utilizan juntas de mortero de 1 cm.

Los bloques que se utilizan en los tabiques y cercos y que deben resistir solamente su propio peso y no llevan cargas, poseen espesores
entre 20 y 30 cm, 39 cm de largo, 14 cm de ancho y 19 cm de alto.

Existen unidades especiales, como las esquinas, medios bloques y 3/4 de bloque, que han sido desarrolladas por SENCICO.

La fabricación de los bloques debe seguir la norma NTP 399.602-2002 de INDECOPI.

RECOMENDACIONES PARA UNA VIVIENDA SEGURA

La estructuración de una vivienda -es decir, la disposición de las paredes resistentes- requiere de una cantidad mínima de muros en ambas direcciones. La relación entre el área de muros y el área techada del piso se denomina **densidad de muros**. En el cálculo del área no se consideran aquellos muros cuya longitud es menor de 30 cm. El valor resultante deberá compararse con los valores propuestos en el Cuadro 4.

Por ejemplo, si se analiza el primer nivel de una casa de 2 pisos, es necesario considerar como área total construida el área del 2do piso + el área del 1er piso.

La densidad de muros es igual al área total de muros en la dirección considerada, dividida entre el área total construida por encima del nivel considerado.
RECOMENDACIONES PARA EL USO DE MUROS DE BLOQUES CON CONFINAMIENTO ESQUINERO (ALBAÑILERÍA CONFINADA)

Los elementos de confinamiento vertical esquineros o intermedios (columnas) estarán ubicados a una distancia (L) no mayor del doble de la altura del entrepiso (H) y menor de 5 m. (F-5.5).

Adicionalmente, es indispensable colocar elementos de confinamiento horizontal (viga collar) a nivel del techo. Si el techo no fuera a vaciarse por el momento, es recomendable colocar la viga collar para evitar cualquier falla de los muros sin sujeción.

Los elementos de confinamiento podrán construirse con un concreto de resistencia no menor de $f_c=175$ kg/cm². El tamaño mínimo del elemento de confinamiento debe ser 15 cm multiplicado por el espesor del muro.

CUADRO 4 CENSIDAD DE MUROS MÍNIMA

<table>
<thead>
<tr>
<th>SUELO TIPO</th>
<th>ZONA-3</th>
<th>ZONA-2</th>
<th>ZONA-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>S_2</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>S_3</td>
<td>5%</td>
<td>4%</td>
<td>2%</td>
</tr>
</tbody>
</table>

S_1 Roca o suelo muy rígido
S_2 Suelo intermedio
S_3 Suelo flexible
RECOMENDACIONES PARA EL USO DE MUROS DE BLOQUES CON ARMADURA DISTRIBUIDA [ALBAÑILERÍA ARMADA]

La armadura de refuerzo debe ser distribuida a lo largo del muro en forma vertical (líneas verdes), introduciéndose en los alvéolos y traslapándose con las mechas que vienen del piso inferior en una distancia no menor de 40 cm. El refuerzo horizontal debe ser continuo y estará anclado en los extremos con un doblez vertical de 10 cm en la celda extrema.

Los alvéolos o huecos de los bloques deberán ser rellenados con concreto líquido con una resistencia no menor de f'c=140 kg/cm².

PROCESO DE FABRICACIÓN DE MUROS CON BLOQUES DE ALBAÑILERÍA ARMADA

LIMPIEZA ANTES DEL ASENTADO
En la construcción de los muros armados pueden emplearse bloques de concreto, arcilla y de silice cal. Las unidades de concreto y silice cal no deben mojarse; sólo deben limpiarse. Debido a la alta variación volumétrica que tienen los bloques de concreto vibrado, no pueden regarse antes del asentado, porque se expandirían, contrayéndose al secar, lo que podría generar fisuras en el muro. Los bloques por usar deben tener una antigüedad minima de 28 días de fabricación.
En el caso de usar bloques de arcilla, estos deben regarse durante ½ hora, unas 10 horas antes de asentarlos. Sin embargo, después de haberse construido la albanilería, sí será posible regar el muro, porque ahora los bloques se encontrarán integrados por el mortero y los cambios volumétricos afectarán al conjunto, pero no a cada bloque.

Las unidades de concreto y sílice cal no deben regarse; sólo deben limpiarse.

RECORTE DE BLOQUES

a) El recorte de bloques debe ser realizado antes de asentarlos, en seco y con una amoladora, en el lugar de la obra (F-5.9).

b) Con el corte, se formarán ventanas de limpieza (oratoneras) en los bloques de la primera hilada de todos los pisos, para eliminar los desperdicios de mortero que hayan caído durante el asentado sobre la base del muro, lesa o cimiento (F-5.10). Para ello, debe colocarse un retazo de plástico en el interior, pues, de otro modo, se produciría una junta fría en la unión del concreto líquido-base.

c) Otro uso de los recortes es el de alojar cajas eléctricas (F-5.11). En este caso, los tubos se instalan antes de asentar los bloques.

d) Cuando se coloca el refuerzo horizontal en el eje del muro, se hacen ranuras de unos 5 cm de longitud en las tapas transversales las que, luego, se eliminan golpeándolas con un martillo, como se muestra en la foto (F-5.12).
PREPARACIÓN DEL MORTERO

Para aquellos bloques que se asientan secos (concreto y silice cal), debe añadirse \(\frac{1}{2} \) volumen de cal hidratada y normalizada por cada volumen de cemento (la mezcla usual cemento-cal-arena gruesa es 1:3:4), para evitar que el mortero se seque rápidamente.

ASENTADO DE BLOQUES

Tradicionalmente, en los muros armados se utilizan cintas de mortero que corren por los bordes horizontales y verticales de los bloques. La Norma E.070 especifica que el mortero de todas las juntas debe cubrir totalmente la superficie de asentado del bloque.

Usualmente, la albañilería armada es de tipo caravista, por lo que las juntas deben ser briznadas extensamente antes de que endurezca la mezcla, no sólo para mejorar el aspecto de la pared, sino para que emerja una lechada de cemento que impermeabilice el mortero y proteja al muro de la acción de la intemperie.
Al igual que en los muros confinados, primero se asientan los "bloques maestros", pudiéndose emplear un nivel de 1.2 m de longitud, en reemplazo de la plomada, y una wincha gruesa, en reemplazo del escantillón. Para guiar el alineamiento horizontal de los bloques internos, se utiliza un cordel atado en sus extremos a unos dispositivos de madera o de metal.

REFUERZOS EN LOS TALONES

Los talones de los muros son sumamente frágiles frente a las tracciones que se producen por la carga de un sismo. Para reforzarlos, conviene utilizar planchas, zunchos o estribos en el refuerzo vertical.

REFUERZO HORIZONTAL

En la construcción del muro, el refuerzo horizontal debe instalarse en las juntas horizontales, en forma de escalera electrosoldada.
Cuando los bloques poseen canales para refuerzo horizontal, el refuerzo se debe colocar en el eje del canal, uniendo el refuerzo vertical y horizontal con ganchos a 135°. Nunca se debe usar ganchos a 180°.

REFUERZO VERTICAL

Según la Norma E.070, para que una varilla quede adecuadamente recubierta y pueda transferir sus esfuerzos al concreto líquido (grout), así como para evitar la formación de cangrejeras, se requiere que la dimensión mínima de las celdas sea de 5 cm por cada varilla o 4 veces el diámetro de la barra por el número de barras alejadas en la celda.

Por ejemplo, cuando el bloque presenta celdas pequeñas (arcilla o sílice cal) con dimensión de 5 cm, sólo será posible colocar 1 varilla de $\frac{1}{2}''$ en cada celda; en cambio, si la celda es de mayor dimensión (bloque de concreto), podrán emplearse hasta varias varillas verticales de mayor diámetro en la misma celda.

En el caso de que se hayan empleado espingas o existan traslapas en la parte inferior de los pisos superiores, una vez terminada de construir la albañilería se inserta la barra vertical sin amarrarla contra la espiga o mecha, para que no se congestionue la celda.

Para evitar que la barra insertada se mueva durante el vaciado del grout, se le debe amarrar a una barra horizontal temporal, que se retirará después de que el grout haya endurecido.
Viviendas de caña y madera
Las edificaciones construidas con caña o madera, o mediante la combinación de ambas, son flexibles y de poco peso, por lo que los efectos sísmicos sobre ellas —y, por lo tanto, los daños que sufren— son mucho menores que los que se producen en las pesadas y débiles construcciones de adobe o en las frágiles edificaciones de adobe no reforzadas.

En las inspecciones realizadas después de sísmos intensos ocurridos en la costa noroeste, en la costa de la costa del Perú, donde se construye con estos materiales, estas construcciones han permanecido en pie, casi sin daños, en medio de las ruinas de las edificaciones de adobe y de ladrillo no reforzadas.

que utilizado en Centro América y Colombia;
- Viviendas de caña, que serán descritas posteriormente de manera breve; y
- Quincha modular prefabricada, un tipo de construcción cuyo uso se desea difundir por las diversas ventajas que ofrece, tal como se verá también más adelante.

CARRIZO. Con un diámetro de ½ a 1 pulgada, alcanza unos 4 m de altura. Interiormente es hueco entre nudo y nudo; es poco resistente y fácilmente atacable por los insectos, por lo que no es recomendable su uso en quincha. Abierto, se utiliza en la fabricación de esteras que, en general, tienen poca duración.

CAÑA DE GUAYAQUIL. Es un tipo de caña de gran diámetro. Puede alcanzar hasta 4 ó 5 pulgadas y más de 10 m de altura. Cuando está madura, presenta un color amarillento. Se utiliza como columna o viga y, abierta, en muros y paredes de partición. Es muy usada en la arquitectura decorativa. Abunda en Ecuador, desde donde se exporta a diversos países vecinos, entre ellos el Perú.

BAMBU. Es la caña más esbelta. Alcanza hasta unos 4 pulgadas de diámetro. Sus núcleos son más distantes que los de la caña de Guayaquil.
yaquil y alcanzan una gran altura. Aún maduro es de color vercioso. Su uso es similar al de la caña de Guayaquil.

Es posible que en América Latina y el Caribe estos tipos de caña tengan denominaciones diferentes a las que aquí se incluyen, pero podrán ser identificados mediante las descripciones presentadas anteriormente.

POTENCIAL DEL PERÚ PARA LA CONSTRUCCIÓN DE VIVIENDAS DE MADERA

En el Perú hay un déficit de casi 1,5 millones de viviendas. En contraste, existen 71,8 millones de ha (hectáreas) cubiertas de bosques tropicales, que representan el 56% del territorio peruano. De esos bosques, 46 millones de ha tienen características aptas para la producción forestal sostenible. En nuestro país, existen 2,500 especies forestales conocidas de las cuales sólo un 10% ha sido estudiado para su posible explotación industrial.

De este pequeño porcentaje, la mitad, es decir, unas 120 especies, son usadas con diversos fines. Sólo 20 de estas especies han sido investigadas en detalle e identificadas, destacando las siguientes maderas: caoba, cedro, tornillo, ishpingo, cataga, copaiba, cumala y mohavena, maderas a las que se les dan usos diversos, principalmente de índole industrial.

Hace algunos años, cuando se estaba estudiando y desarrollando la quincia modular prefabricada, la madera más usada era el tornillo, pero actualmente se ha incrementado de manera considerable. Según el Arq. Luis Takahashi⁶, en la actualidad (mayo, 2008), las maderas más adecuadas para la construcción de viviendas son el cachimbo y la cumala.

Esta última requiere tratamiento para su conservación.

La gran riqueza de bosques maderables que tiene el Perú permite, si estos recursos son explotados racionalmente, incrementar el rendimiento de producción maderera de 6m³ madera/ha a cerca de 40m³ madera/ha, sin necesidad de degradar los bosques, sino más bien reforestando las áreas dañadas. Con la construcción y mejoramiento de las carreteras transoceánicas en el norte y sur del país y de otras vías de penetración, el acceso a ella será mucho más fácil y se reducirá significativamente el costo del transporte de la madera para su uso en la industria de la construcción.

Con todos estos factores auspiciosos, sumados a la alta resistencia sísmica de las viviendas de madera bien diseñadas y construidas, parte del déficit habitacional de nuestro país podría ser solucionada mediante la construcción de viviendas con este material.

PRESERVACIÓN DE LA CAÑA Y LA MADERA

La caña y la madera se debilitan por la acción de los hongos y los insectos o porque se pueden, si se someten a largos períodos de humedad. En estos casos, las construcciones de caña y madera se deterioran y podrían fallar durante un evento sísmico intenso, como ocurrió con numerosas viviendas de bahareque en San

⁶ Comunicación personal
Salvador, El Salvador, durante el terremoto de 1986.

Para evitar que esto ocurra, es necesario proteger las paredes de caña y madera con aleros, a fin de que la lluvia no las moje; asimismo, evitar que estén en contacto directo con suelos húmedos. También es necesario proteger estos materiales con preservantes no tóxicos.

EL MORTERO

Por su poca peso, las construcciones con caña son sísmorresistentes. El mortero de barro y paja hace que los muros de quincha aísen muy bien los ambientes interiores frente a los cambios bruscos de temperatura y los ruidos exteriores. Durante los ensayos de laboratorio se encontró que el mortero de cemento, arena y yeso, al penetrar en las rajaduras que se producen en la primera capa de barro y paja, forma, en conjunto, una placa altamente rígida y resistente frente a los sismos.

Por estas razones, en el Perú se ha desarrollado un método de construcción con este material utilizando módulos prefabricados de quincha.

TARTAJEOS Y ACABADOS

Para un buen tarrajeo sobre las paredes de quincha tradicional sobre una construcción que combine quincha y madera, se aplican dos capas.

La primera se realiza utilizando barro y paja, una mezcla similar a la que se emplea para fabricar adobes, la que se coloca por ambas caras de las paredes. Como se sabe, esta mezcla de barro más paja tiene dos cualidades muy provechosas: amortigua los ruidos callejeros y es un buen aislante térmico.

El acabado —que es la capa exterior del tarrajeo— consiste en una mezcla de cemento, arena, yeso y agua limpia. Un buen acabado puede darle a estas paredes un acabado similar al de una construcción con ladrillos.

TECHOS

Los techos tienen que ser ligeros, construidos con vigas y tablas de madera o con troncos de árboles, cubiertos con planchas metálicas de zinc u otro material. En zonas rurales, se utilizan las hojas de palmeras.

EDIFICACIONES DE CAÑA PURA

La casa modelo que se muestra es de un tipo que generalmente se construye en el valle del río Cañete. F-6.1.

La caña se teje sobre postes que se forman utilizando cuatro cañas gruesas amarradas y “vigas” conformadas por 2 ó 3 cañas gruesas
colocadas horizontalmente, una debajo de la otra. Sobre esta base de columnas y vigas, se tejen las paredes de quincha, con cañas más delgadas colocadas en forma intercalada, tal como se muestra en el gráfico F-6.2.

Esta es una construcción tradicional en las áreas rurales de algunos valles de la costa del Perú, en los que se le denomina quincha.

La quincha de la Lima antigua es el equivalente al bahareque de Colombia y Centroamérica. Décadas atrás, hasta 1940, en Lima se construía el segundo piso de las viviendas con quincha y el primero, con adobe (F-6.3). Este método constructivo fue recomendado por un destacado académico francés para la reconstrucción de nuestra capital, después de que fuera asolada por el gran terremoto de 1746.

Las paredes son una combinación de postes y viguetas de madera ensamblados con tejidos de caña, cubiertos con mortero de barro y paja y recubiertos con cemento, yeso y arena, elementos que propician un buen acabado. Los techos se construyen, en las áreas urbanas, con vigas y tablas de madera. En las áreas rurales se utilizan, en la actualidad, para la construcción de los techos -tal como se ha
EDIFICACIONES DE MADERA

Se construyen utilizando métodos muy conocidos y difundidos en las zonas altamente sísmicas, como Japón y California, EEUU. En este caso, las fuerzas sísmicas son absorbidas, en general, por elementos diagonales. Recientemente, se han desarrollado placas de madera muy resistentes al corte lateral y que facilitan la construcción.

La quincha de la Lima antigua es el equivalente al bahareque de Colombia y Centroamérica. Durante los sismos estas edificaciones se mueven rítmicamente y no se desploman.

F-6.3 Vista lateral del segundo piso de una casa en el centro de Lima. El primer piso es de adobe. Nótese el enramado de madera y la caña fijada a las piezas de madera.

mencionado anteriormente: cañas gruesas o troncos de árboles, cubiertos con cañas delgadas o también planchas onduladas de zinc u otro material.

Durante el sismo de 1999, en Quincho, Colombia, donde se produjo una gran destrucción de la albañilería con poco refuerzo, las construcciones de bahareque casi no sufrieron daños. Esta situación se produjo debido a que, durante los sismos, estas edificaciones se mueven rítmicamente y no se desploman. Por esta razón, los lugareños las llaman "tembloreras".

Cardone, 1999. comunicación personal.

537 p. Lima, Perú. Por este motivo, en el presente manual sólo se incluyen algunos aspectos considerados relevantes.

Debido a su poco peso, no sufren mayores daños en casos de sismo. Esto concuerda con los resultados del proyecto SISRA (Sismicidad de la Región Andina) del Centro Regio-
nal de Sismología para Sudamérica, CERESIS, reportados por Franz Sauter.

Sin embargo, estas construcciones pueden fallar si se les coloca techos muy pesados, por ejemplo, de tejas o aislantes térmicos, con la finalidad de que puedan soportar ráfagas violentas de vientos, como los tifones que afectan el Japón.

En lo referente al aspecto estructural de las construcciones de madera, el elemento más efectivo y tradicional para que soporten cargas laterales son las diagonales colocadas en lugares estratégicos. El techo también debe arriostarse, para que en conjunto formen una caja rígida.

El gráfico F-6.4, tomado de un folleto editado en el Japón para su difusión masiva entre la población, muestra un ejemplo de cómo disponer los elementos de arriostre.

Las edificaciones de madera, debido a su poco peso, no sufren mayores daños en casos de sismo.
Asimismo, la figura F-6.5 muestra algunas uniones metálicas desarrolladas por la empresa SIMPSON Strong-Tie Construction Connectors, presentadas en su stand durante la 12CMIS realizada en Auckland, Nueva Zelanda, a comienzos del año 2000.

Esta empresa tiene, entre otros, seis publicaciones técnicas que resultan de interés y entre las que destaca Do it Yourself Connectors (Fabrique usted mismo sus conectores).

QUINCHA MODULAR PREFABRICADA

La quincha modular prefabricada es similar a las paredes construidas de quincha de los segundos pisos de la Lima antigua y también al bahareque. Pero, a las ventajas mencionadas anteriormente que tiene la quincha, se han agregado los modernos conceptos que facilitan su construcción: prefabricación modular, control de calidad en planta, producción masiva, con lo que se reducen sustancialmente los costos y se puede emprender importantes proyectos de construcción de viviendas, división del proceso constructivo y buen diseño.

En el Perú se ha desarrollado un método de construcción con este material utilizando módulos prefabricados de quincha.

Construcción modular. Paneles prefabricados de 1,20 m de ancho y 2,40 m de altura, con pisos de concreto de 10 cm de espesor y asentados en un "sobrecimiento" de 10 cm de altura. Para facilitar el trabajo de ensamblaje, los paneles han sido diseñados únicamente en tres tipos de módulo: muro, puerta y ventana. Ver los gráficos F-6a, b y c.

Control de calidad en "planta", que sólo requiere del equipamiento propio de una carpintería.

Producción masiva y, por lo tanto, conforme a lo expresado, reducción de los costos, que desde ya son baratos en las zonas donde abundan la madera y la caña, como la caña de selva y algunos valles de la costa del Perú, así como también en diversos países de América Latina y el Caribe.

División del proceso constructivo en etapas simples de realizar, de manera que pueda participar también la mano de obra no calificada. Esto ratifica que el método es adecuado para sistemas de autoconstrucción y para programas de reconstrucción, después de la ocurrencia de desastres, con la activa participación de los damnificados. Sólo se requeriría de mano de obra calificada para el trazado de la planta de la vivienda, que debe ser preciso para no tener problemas en el montaje de los paneles, y para el taraje final, con la finalidad de obtener un buen acabado.

Buen diseño, que hace de estas edificaciones viviendas atractivas, baratas, confortables y seguras contra terremotos.

Centros poblados enteros, como un campamento minero, se pueden diseñar y prefabricar íntegramente en los sitios donde abunda la madera y la caña. Luego, los módulos se transportan y se les arma en obra, como mecanos.
MODELO DE VIVIENDA DE QUINCHA MODULAR PREFABRICADA

En los gráficos F-6.6a, b y c se presentan los paneles modulares: panel estándar, panel puerta y panel ventana. Si se amplía la escala de esas figuras, pueden servir como planos de obra para habilitar las piezas de madera y armar los módulos.

Un constructor con experiencia puede mejorar y simplificar dichos paneles.

Observe que, como parte del panel puerta y panel ventana, están incluidos sus respectivos marcos, lo que también representa un significativo ahorro.

En los gráficos F-6.6d se presenta la planta de una casa de 6,80 m x 7,50 m con dos dormitorios, se incluye la disposición de los paneles, las líneas de elementos y las proyecciones de las viguetas de madera del techo. La elevación principal se observa en la figura F-6.6c. Nótese la disposición de los paneles, incluyendo los medios paneles en las esquinas.

En la figura F-6.6e, el corte A-A, paralelo a la fachada, se observa que la losa de concreto simple de 10 cm de espesor ha sido ensanchada en la cimentación para soportar los pesos de los muros conformados por paneles y el peso del techo.

Observe que los paneles van apoyados encima del sobrecimiento de 10 cm x 10 cm de sección. De esta forma, se evita que la madera del panel se moje cuando se limpia el piso con agua.

En el gráfico F-6.6g se presenta un corte perpendicular a la fachada, que pasa por el baño.

En zonas lluviosas, se recomienda levantar el nivel del piso de la casa a más de 20 cm sobre el nivel natural del suelo.
El método es adecuado para sistemas de autoconstrucción y para programas de reconstrucción, después de la ocurrencia de desastres.

F-6.9 d Planta de una vivienda con dos dormitorios.

F-6.9 e Elevación de la fachada principal.

F-6.9 f, g Corte longitudinal y transversal. Notese el ensanche de la losa de piso, a manera de cimentación, para recibir los muros portantes.
Los autores agradecen el auspicio de la Agencia de Estados Unidos para el Desarrollo Internacional, USAID, para la construcción de la vivienda modelo y los ensayos a escala natural, así como para el desarrollo de la quincha modular prefabricada, que tomó varios años, durante los cuales se desarrollaron dos tesis profesionales de ingeniería civil, a cargo del Ing. Nelson Vásquez y del Ing. Carlos Cuadrat.
Programa de las Naciones Unidas para el Desarrollo